算法竞赛进阶指南, 227页,分块, 离散化
本题要点:
1、先离散化,编号的大小为 10^9, 而元素个数为 5 * 10^5
2、 分块,将 n 个数值,平均分为 sqrt(n * log(n)) 段。 f[i][j]表示从第i段到第j段,出现最多的蒲公英编号。
3、数组 f[T][T]的计算,详细看代码。
4、 假如区间 [l ,r] 包含3 部分,中间是若干完整的段 [L, R],两边是不完整的段 [l, L), (R, r] ,
那么中间部分,直接得到出现最多的是哪个编号(f[L][R]), 并计算出其出现过的次数。
扫描左右两边的两个不完整段,所有出现过的编号,计算每一个编号出现过的次数。
取以上出现过的最多次数,就是答案。
5、 计算某个编号 x 在 区间 [l, r] 出现的次数:
在序列 e[x] 中查找第一个大于等于l 的下标 ,lower_bound(e[x].begin(), e[x].end(), l);
在序列 e[x] 中查找第一个大于r 的下标, upper_bound(e[x].begin(), e[x].end(), r);
两个值相减即可;
#include <cmath>
#include <cstdio>
#include <vector>
#include <cstring>
#include <algorithm>
#include <iostream>
using namespace std;
const int N = 40006, T = 806;
int a[N], b[N], c[N], L[N], R[N], pos[N], f[T][T];
//L[N], R[N]分别表示每一段的左端点,右端点; pos[i] 表示 点i所在的段的编号
// f[i][j]表示从第i段到第j段,出现最多的蒲公英编号
vector<int> e[N]; // e[i]表示数值i 在序列中出现的下标
int n, m, t;
void discrete()
{
memcpy(b, a, sizeof b);
sort(b + 1, b + n + 1);
int tot = unique(b + 1, b + n + 1) - (b + 1);
for(int i = 1; i <= n; ++i)
{
a[i] = lower_bound