洛谷 P4168 [Violet]蒲公英(算法竞赛进阶指南,分块, 离散化)

本篇博客介绍了算法竞赛中处理大规模数据的策略,聚焦于‘蒲公英’问题。通过离散化将元素编号限制在10^9范围内,并使用分块方法,将数据分为sqrt(n * log(n))段。核心算法涉及动态规划数组f[T][T]的计算,以及处理区间[L, R]内的最频繁出现的蒲公英编号。同时,博客讨论了如何处理区间[l, r]内包含不完整段的情况,以及如何计算特定编号x在[l, r]区间内的出现次数,涉及到lower_bound和upper_bound的使用。" 102915045,9141017,Python dot函数详解:一维数组的应用,"['Python', '数组操作', '矩阵运算', 'NumPy库', '线性代数']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

算法竞赛进阶指南, 227页,分块, 离散化
本题要点:
1、先离散化,编号的大小为 10^9, 而元素个数为 5 * 10^5
2、 分块,将 n 个数值,平均分为 sqrt(n * log(n)) 段。 f[i][j]表示从第i段到第j段,出现最多的蒲公英编号。
3、数组 f[T][T]的计算,详细看代码。
4、 假如区间 [l ,r] 包含3 部分,中间是若干完整的段 [L, R],两边是不完整的段 [l, L), (R, r] ,
那么中间部分,直接得到出现最多的是哪个编号(f[L][R]), 并计算出其出现过的次数。
扫描左右两边的两个不完整段,所有出现过的编号,计算每一个编号出现过的次数。
取以上出现过的最多次数,就是答案。
5、 计算某个编号 x 在 区间 [l, r] 出现的次数:
在序列 e[x] 中查找第一个大于等于l 的下标 ,lower_bound(e[x].begin(), e[x].end(), l);
在序列 e[x] 中查找第一个大于r 的下标, upper_bound(e[x].begin(), e[x].end(), r);
两个值相减即可;

#include <cmath>
#include <cstdio>
#include <vector>
#include <cstring>
#include <algorithm>
#include <iostream>
using namespace std;
const int N = 40006, T = 806;
int a[N], b[N], c[N], L[N], R[N], pos[N], f[T][T];
//L[N], R[N]分别表示每一段的左端点,右端点; pos[i] 表示 点i所在的段的编号
// f[i][j]表示从第i段到第j段,出现最多的蒲公英编号 
vector<int> e[N];	// e[i]表示数值i 在序列中出现的下标
int n, m, t;

void discrete()
{
   
	memcpy(b, a, sizeof b);
	sort(b + 1, b + n + 1);
	int tot = unique(b + 1, b + n + 1) - (b + 1);
	for(int i = 1; i <= n; ++i)
	{
   
		a[i] = lower_bound
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值