洛谷 P2261 [CQOI2007]余数求和(算法竞赛进阶指南, 数学推导)

算法竞赛进阶指南, 141页,数学推导
本题要点:
1、 k mod i = k - [k / i] * i, 答案就是 n * k - sum{[k / i] * i}(1 <= i <= n)
记 g(x) = [k / [k / x]], 可以证明 , [k / g(x)] == [k / x]
从而,x 在 区间[i, g(i)] 的范围内,[k / x] = [k / i],
也就是说, i <= x <= g(i)时候, [k / x] * x 形成了一个等差数列,
首项 [k / i] * i, 尾项 [k / i] * g(i), 公差为 [k / i]。 然后就是等差数列求和。
2、 区间 [1, k] 被分为理若干段, 每一段 [k / i] 的值是相等的。
求和 sum{[k / i] * i}(1 <= i <= n), 就是每一段的累加。

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
long long n, k;

int main()
{
	scanf("%lld%lld", &n, &k);
	long long ans = n * k;
	if(n > k)
		n = k;
	long long i = 1, gx; 
	while(i <= n)
	{
		gx = k / (k / i);	
		if(gx > n)
		{
			gx = n;
		}
		ans -= ((gx - i + 1) * (gx + i) / 2) * (k / i);
		i = gx + 1;
	}
	printf("%lld\n", ans);
	return 0;
}

/*
10 5
*/

/*
29
*/
展开阅读全文
©️2020 CSDN 皮肤主题: 游动-白 设计师: 上身试试 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值