算法竞赛进阶指南,156页,矩阵乘法
本题要点:
1、 n <= 2 * 10^9, 如果使用迭代法计算 斐波那契数列,显然会超时。
2、 题目给出了提示, 2 * 2 阶矩阵(假设叫特殊矩阵) 的n次方,得到的矩阵,就是 fib[n], fib[n - 1], f[n - 1], f[n - 2]
当然计算矩阵的n次方,不能一个一个的成,那样时间复杂度也是 O(n).
应该使用二进制的方法,扫描 n 值得二进制的每一位,看看是不是1, 用矩阵B 来存放 特殊矩阵 的 2, 4, 8, 16 次方,…
类似于快速幂中的二进制优化。
3、 这里使用了一维数组来模拟矩阵的乘法,写得很土。
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
long long n, mod;
int A[5], B[5];
void multi(int a[], int b[])
{
int c[5];
c[1] = (a[1] * b[1] + a[2] * b[3]) % mod;
c[2] = (a[1] * b[2] + a[2] * b[4]) % mod;
c[3] = (a[3] * b[1] + a[4] * b[3]) % mod;
c[4] = (a[3] * b[2] + a[4] * b[4]) % mod;
for(int i = 1; i <= 4; ++i)
{
a[i] = c[i];
}
}
void solve()
{
A[1] = 0, A[2] = 1, A[3] = 1, A[4] = 0;
B[1] = B[2] = B[3] = 1, B[4] = 0;
long long b = n;
while(b)
{
if(b & 1)
{
multi(A, B);
}
multi(B, B);
b >>= 1;
}
printf("%d\n", A[1]);
}
int main()
{
mod = 10000;
while(scanf("%lld", &n) != EOF && n != -1)
{
solve();
}
return 0;
}
/*
0
9
999999999
1000000000
-1
*/
/*
0
34
626
6875
*/