POJ 3070 Fibonacci (算法竞赛进阶指南,矩阵乘法)

算法竞赛进阶指南,156页,矩阵乘法

本题要点:
1、 n <= 2 * 10^9, 如果使用迭代法计算 斐波那契数列,显然会超时。
2、 题目给出了提示, 2 * 2 阶矩阵(假设叫特殊矩阵) 的n次方,得到的矩阵,就是 fib[n], fib[n - 1], f[n - 1], f[n - 2]
当然计算矩阵的n次方,不能一个一个的成,那样时间复杂度也是 O(n).
应该使用二进制的方法,扫描 n 值得二进制的每一位,看看是不是1, 用矩阵B 来存放 特殊矩阵 的 2, 4, 8, 16 次方,…
类似于快速幂中的二进制优化。
3、 这里使用了一维数组来模拟矩阵的乘法,写得很土。

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
long long n, mod;
int A[5], B[5];

void multi(int a[], int b[])
{
	int c[5];
	c[1] = (a[1] * b[1] + a[2] * b[3]) % mod;
	c[2] = (a[1] * b[2] + a[2] * b[4]) % mod;
	c[3] = (a[3] * b[1] + a[4] * b[3]) % mod;
	c[4] = (a[3] * b[2] + a[4] * b[4]) % mod;
	for(int i = 1; i <= 4; ++i)
	{
		a[i] = c[i];
	}
}

void solve()
{
	A[1] = 0, A[2] = 1, A[3] = 1, A[4] = 0;
	B[1] = B[2] = B[3] = 1, B[4] = 0;
	long long b = n;
	while(b)
	{
		if(b & 1)
		{
			multi(A, B);
		}
		multi(B, B);	
		b >>= 1;
	}
	printf("%d\n", A[1]);
}

int main()
{
	mod = 10000;
	while(scanf("%lld", &n) != EOF && n != -1)
	{
		solve();	
	}
	return 0;
}

/*
0
9
999999999
1000000000
-1
*/

/*
0
34
626
6875
*/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值