HOJ 1532 Drainage Ditches(最大流EK算法,裸题)

最大流EK算法,裸题
本题要点:
1、EK算法的步骤:
先用 bfs,判断图中知否存在一条增光路;
存在增光路,那么每次更新这条增光路;
2、更新增光路:
pre[i] 表示增光路上,i点的前一个点的下标
incf[i], 表示起点s 到达点i的增光路上各边的最小剩余容量。
因此,增光路上的每一条边都应该减去 incf[t]

#include <cstdio>
#include <cstring>
#include <iostream>
#include <queue>
#include <algorithm>
using namespace std;
const int MaxN = 210, MaxM = 510;
const int inf = 1 << 29;
int head[MaxN], ver[MaxM], edge[MaxM], Next[MaxM], vis[MaxN];
int incf[MaxN], pre[MaxN];
int g[MaxN][MaxN];	//邻接矩阵,用于去重边
int n, m, st, ed, tot, maxflow;

void add(int x, int y, int z)
{
	ver[++tot] = y, edge[tot] = z, Next[tot] = head[x], head[x] = tot;
	ver[++tot] = x, edge[tot] = 0, Next[tot] = head[y], head[y] = tot;
}

bool bfs()
{
	memset(vis, 0, sizeof vis);
	queue<int> q;
	q.push(st);
	vis[st] = 1;
	incf[st] = inf;		//增光路上各边的最小剩余容量
	while(q.size())
	{
		int x = q.front(); q.pop();
		for(int i =head[x]; i; i = Next[i])
		{
			if(edge[i])
			{
				int y = ver[i];
				if(vis[y])	continue;
				incf[y] = min(incf[x], edge[i]);
				pre[y] = i;	//记录前驱
				q.push(y), vis[y] = 1;
				if(y == ed)	
					return 1;
			}
		}
	}
	return 0;
}

void update()
{
	int x = ed;
	while(x != st)
	{
		int i = pre[x];
		edge[i] -= incf[ed];;
		edge[i ^ 1] += incf[ed];
		x = ver[i ^ 1];
	}
	maxflow += incf[ed];
}

int main()
{
	int x, y, z;
	while(scanf("%d%d", &m, &n) != EOF)
	{
		memset(head, 0, sizeof head);
		memset(Next, 0, sizeof Next);
		memset(g, 0, sizeof g);
		st = 1, ed = n, tot = 1, maxflow = 0;
		for(int i = 0; i < m; ++i)
		{
			scanf("%d%d%d", &x, &y, &z);
			g[x][y] += z;
		}
		for(int i = 1; i <= n; ++i)
		{
			for(int j = 1; j <= n; ++j)
			{
				if(g[i][j])
				{
					add(i, j, g[i][j]);
				}
			}
		}
		while(bfs())
		{
			update();
		}
		printf("%d\n", maxflow);
	}
	return 0;
}

/*
5 4
1 2 40
1 4 20
2 4 20
2 3 30
3 4 10
*/

/*
50
*/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值