最大流EK算法,裸题
本题要点:
1、EK算法的步骤:
先用 bfs,判断图中知否存在一条增光路;
存在增光路,那么每次更新这条增光路;
2、更新增光路:
pre[i] 表示增光路上,i点的前一个点的下标
incf[i], 表示起点s 到达点i的增光路上各边的最小剩余容量。
因此,增光路上的每一条边都应该减去 incf[t]
#include <cstdio>
#include <cstring>
#include <iostream>
#include <queue>
#include <algorithm>
using namespace std;
const int MaxN = 210, MaxM = 510;
const int inf = 1 << 29;
int head[MaxN], ver[MaxM], edge[MaxM], Next[MaxM], vis[MaxN];
int incf[MaxN], pre[MaxN];
int g[MaxN][MaxN]; //邻接矩阵,用于去重边
int n, m, st, ed, tot, maxflow;
void add(int x, int y, int z)
{
ver[++tot] = y, edge[tot] = z, Next[tot] = head[x], head[x] = tot;
ver[++tot] = x, edge[tot] = 0, Next[tot] = head[y], head[y] = tot;
}
bool bfs()
{
memset(vis, 0, sizeof vis);
queue<int> q;
q.push(st);
vis[st] = 1;
incf[st] = inf; //增光路上各边的最小剩余容量
while(q.size())
{
int x = q.front(); q.pop();
for(int i =head[x]; i; i = Next[i])
{
if(edge[i])
{
int y = ver[i];
if(vis[y]) continue;
incf[y] = min(incf[x], edge[i]);
pre[y] = i; //记录前驱
q.push(y), vis[y] = 1;
if(y == ed)
return 1;
}
}
}
return 0;
}
void update()
{
int x = ed;
while(x != st)
{
int i = pre[x];
edge[i] -= incf[ed];;
edge[i ^ 1] += incf[ed];
x = ver[i ^ 1];
}
maxflow += incf[ed];
}
int main()
{
int x, y, z;
while(scanf("%d%d", &m, &n) != EOF)
{
memset(head, 0, sizeof head);
memset(Next, 0, sizeof Next);
memset(g, 0, sizeof g);
st = 1, ed = n, tot = 1, maxflow = 0;
for(int i = 0; i < m; ++i)
{
scanf("%d%d%d", &x, &y, &z);
g[x][y] += z;
}
for(int i = 1; i <= n; ++i)
{
for(int j = 1; j <= n; ++j)
{
if(g[i][j])
{
add(i, j, g[i][j]);
}
}
}
while(bfs())
{
update();
}
printf("%d\n", maxflow);
}
return 0;
}
/*
5 4
1 2 40
1 4 20
2 4 20
2 3 30
3 4 10
*/
/*
50
*/