洛谷 P4549 【模板】裴蜀定理

裴蜀定理指出,方程ax+by+cz+…+nm=f有解当且仅当f是所有系数的最大公约数的倍数。在给定序列{an}的情况下,寻找序列{bn}使a1b1+a2b2+…+an*bn达到最小正数值,最小值恰好是序列{an}中所有项的最大公约数。
摘要由CSDN通过智能技术生成

裴(pei)蜀定理
引理:对于给定的正整数a,b,方程ax+by=c有解的充要条件为c是gcd(a,b)的整数倍
裴(pei)蜀定理:
方程ax+by+cz+…+nm=f(其中a,b,c…n,f为整数)有解的充要条件是f为gcd(a,b,c,…,n)的整数倍
定理的应用:
给定一个序列{an},求一个整数序列{bn}使得a1b1+a2b2+…+an*bn值最小(要求最小值为正数),求这个最小值
解:根据裴蜀定理的推广,原式最小值即为gcd(a1,a2…an)

#include <cstdio>
#include <cstring>
#include <iostream>
using 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值