题意翻译
给你一个长度为n的长字符串,“完美子串”既是它的前缀也是它的后缀,求“完美子串”的个数且统计这些子串的在长字符串中出现的次数
1、 普通KMP 的next数组, 可以求出完美子串的数量,首先,字符串本身是完美子串
设长度 为n, 然后就通过 next 数组不断回溯,
int perfect = 0; //完美子串的数量
int k = n;
while(k)
{
len[++len_cnt] = k; // 完美子串的长度
++perfect;
k = Next[k];
}
2、 通过扩展KMP, 得到和其自身前缀相等的 子串,
z[] 数组的意义:z[i] 表示字符串s与其后缀 s[i, n] 的最长公共前缀(LCP)的长度
3、 结构体数组 LCP[i] 记录长度为i的 子串的长度 len和 (全体子串中长度>= len) 的数量
struct node
{
int len; // z[i] = len 时候
int cnt; // >= len 的次数
}LCP[MaxN]; // LCP 最长公共前缀, 从长到短排序
4、最后输出答案,就是把完美子串出现过的子串(这些子串的长度都记录在数组 len[] 下)
进行输出, 因为结构体数组 LCP[] 的下标是子串的长度,所以很好输出
#include <bits/stdc++.h>
using namespace std;
const int MaxN = 1e5 + 10;
int count_z[MaxN];
int Next[MaxN], z[MaxN];
char a[MaxN];
int n;
struct node
{
int len; // z[i] = len 时候
int cnt; // >= len 的次数
}LCP[MaxN]; // LCP 最长公共前缀, 从长到短排序
int LCP_cnt;
void initNext()
{