安全
文章平均质量分 98
Antrn
和光同尘,与时舒卷;戢鳞潜翼,思属风云。
展开
-
代理重加密
关键词:密文云数据共享代理重加密主要是通过代理服务器将一个用户用自己公钥加密的密文转换为另一个用户可以用自己私钥解密的密文,且不泄露用户的私钥和明文信息,从而实现密码共享。基于用户数据隐私性考虑,用户存放在云端的数据都是加密形式存在的。而云环境中存在着大量数据共享的场景。由于数据拥有者对云服务提供商并不完全信任,不能将解密密文的密钥发送给云端,由云端来解密并分享出去。数据拥有者自己下载密文解密后,再用数据接收方的公钥加密并分享,无疑给数据拥有者带来很大的麻烦,同时也失去了云端数据共享的意义。代理重加密原创 2020-10-05 16:23:47 · 3055 阅读 · 0 评论 -
一文讲懂IPFS
IPFS什么是IPFS?星际文件系统是一个旨在创建持久且分布式存储和共享文件的网络传输协议。它是一种内容可寻址的对等、点到点 的超媒体分发协议。在IPFS网络中的节点将构成一个分布式文件系统,它尝试为所有计算设备连接同一个文件系统,可以让我们的互联网速度更快,更加安全,并且更加开放,IPFS协议的目标是取代传统的互联网协议HTTP。什么是超媒体?超媒体对应之前的超文本,超文本意思就是我们建立文本与文本之间的连接,超媒体的意思是它要建立的是文本、图片、视频之间的连接。http这个协议就是一个超文本协原创 2020-10-05 15:36:15 · 1019 阅读 · 2 评论 -
n2n(Pear-to-pear) 内网穿透
目录n2n简介组成EdgeSupernode之间的关系如何使用项目地址1、快速开始设置自定义超级节点安装n2n软件包手动编译使dege作为服务运行使用方法2启用中心节点(supernode)启用边缘节点(edge)放入后台执行:&n2n简介假如想实现远程访问家里的路由、电脑,等等没有外网IP的设备,最简单的方式就是采用端口映射(端口转发),但是很多情况下我们没有路由的权限,这样根本就没...原创 2020-04-02 11:24:20 · 5848 阅读 · 0 评论 -
frp-内网穿透工具1
目录项目地址开发状态架构使用示例下载安装通过 ssh 访问公司内网机器修改 frps.ini 文件启动 frps:修改 frpc.ini 文件启动 frpc:访问测试其他配置安全地暴露内网服务示例配置frpc客户端热加载配置文件获取用户真实 IP通过密码保护你的 web 服务最后参考资料项目地址github-frp由于个人计算机以及可移动设备的数量增多,现在人们面临的很大的问题是“没有公网 ...原创 2020-04-02 09:50:31 · 994 阅读 · 0 评论 -
APT攻击检测与防御详解
APT定义APT(Advanced Persistent Threat)是指高级持续性威胁,本质是针对性攻击。 利用先进的攻击手段对特定目标进行长期持续性网络攻击的攻击形式,APT攻击的原理相对于其他攻击形式更为高级和先进,其高级性主要体现在APT在发动攻击之前需要对攻击对象的业务流程和目标系统进行精确的收集。在此收集的过程中,此攻击会主动挖掘被攻击对象受信系统和应用程序的漏洞,利用这些漏洞组建.........原创 2019-01-20 17:51:58 · 41336 阅读 · 3 评论 -
【翻译】Neural Cleanse: Identifying and Mitigating Backdoor Attacks in Neural Networks
文章目录ABSTRACTI. INTRODUCTIONII. BACKGROUND: BACKDOOR INJECTION IN DNNSIII. OVERVIEW OF OUR APPROACH AGAINST BACKDOORSA. Attack ModelB. Defense Assumptions and GoalsC. Defense Intuition and OverviewIV. ...翻译 2019-04-12 19:38:56 · 6735 阅读 · 8 评论 -
使用webbrowser和win32api破解某宝滑动验证码
如题,废话不多说直接上代码:# _*_coding:UTF-8_*_'''date: 2019.04.26/2019.04.30author: Antrncrack tb slide-captchasuccess rate: 100%'''import win32apiimport win32conimport win32guifrom ctypes import *imp...原创 2019-04-30 17:02:19 · 1732 阅读 · 0 评论 -
【翻译】How to Backdoor Federated Learning
联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是在保障大数据交换时的信息安全、保护终端数据和个人数据隐私、保证合法合规的前提下,在多参与方或多计算结点之间开展高效率的机器学习。其中,联邦学习可使用的机器学习算法不局限于神经网络,还包括随机森林等重要算法。联邦学习有望成为下一代人工智能协同算法和协作网络的基础。本文是来自arxiv2018的一篇论文,讲解如何后门攻击联邦学习。翻译 2019-05-24 11:53:17 · 3213 阅读 · 3 评论 -
【翻译】Poison Frogs! Targeted Clean-Label Poisoning Attacks on Neural Networks
【论文翻译-后门攻击】毒蛙!针对神经网络的干净标签的中毒攻击-NeurIPS 2018翻译 2019-05-23 21:03:47 · 3812 阅读 · 0 评论