思路:
1. 一开始想着把墙当成图的一部分记下来,但发现比较麻烦而且不会区分没有墙和房间的地方;可以把墙当作判定条件之一在方位循环里处理。
2.这是典型的连通块问题:在主函数里循环找另外的节点,再对该节点展开深搜,标记可以走到的点,直到没有点可以走为止。(简洁版:标记这个点,标记符合条件的相邻点,对相邻点进行深搜)
3.墙用二进制表示与方向向量匹配。
易错:
x表示行, y表示列(但x是纵向走的,y是横向走的)
描述
1 2 3 4 5 6 7 ############################# 1 # | # | # | | # #####---#####---#---#####---# 2 # # | # # # # # #---#####---#####---#####---# 3 # | | # # # # # #---#########---#####---#---# 4 # # | | | | # # ############################# (图 1) # = Wall | = No wall - = No wall
图1是海拉鲁城堡的地形图。请你编写一个程序,计算该城堡一共有多少房间,最大的房间有多大。
城堡被分割成m×n(m≤50,n≤50)个方块,每个方块可以有0~4面墙。
输入
前两行是两个整数,分别是南北向、东西向的方块数(行和列)。
在接下来的输入行里,每个方块用一个数字p表示(0≤p≤50)。其二进制位为1代表有墙,为0代表无墙。
四面墙由整数P的后四位表示。最低位代表西墙(0001),第二位代表北墙(0010),第三位4表示东墙(0100),第四位表示南墙(1000)。
四个数相加的和就是每个方块的四面墙的状态。
输入数据中每个方块的内墙是重叠的,方块(1,1)的南墙同时也是方块(2,1)的北墙。
输入的数据保证城堡至少有两个房间。
输出
海拉鲁城堡的房间数、海拉鲁城堡中最大房间所包括的方块数。
结果显示在标准输出设备上。
输入样例 1
4 7 11 6 11 6 3 10 6 7 9 6 13 5 15 5 1 10 12 7 13 7 5 13 11 10 8 10 12 13
输出样例 1
5 9
//x是行, y是列
#include<iostream>
using namespace std;
const int N = 55;
int m, n, cntroom, roomarea, maxarea;
int room[N][N];
bool st[N][N];
void dfs(int x, int y){
st[x][y] = true;
++ roomarea;
// cout << x * n + y << endl;
// cout << roomarea << endl;
int dx[] = {0, -1, 0, 1}, dy[] = {-1, 0, 1, 0};
for(int i = 0; i < 4; ++ i){
int nx = dx[i] + x, ny = dy[i] + y;
//cout << 'a' << endl;
//cout << nx << ' ' << ny << endl;
if(nx < 0 || nx >= m || ny < 0 || ny >= n) continue;
//cout << 'b' << endl;
if(st[nx][ny]) continue;
//cout << (room[x][y] >> i & 1) << endl;
if(room[x][y] >> i & 1) continue;
dfs(nx, ny);
}
}
int main(){
cin >> m >> n;
for(int i = 0; i < m; ++ i){
for(int j = 0; j < n; ++ j){
cin >> room[i][j];
}
}
for(int i = 0; i < m; ++ i){
for(int j = 0; j < n; ++ j){
if(!st[i][j]){
++ cntroom; roomarea = 0;
dfs(i, j);
// cout << cntroom <<' ' << roomarea << endl;
maxarea = max(maxarea, roomarea);
}
}
}
cout << cntroom << endl;
cout << maxarea;
}