object_detect_codes_analyz
记录faster-rcnn(或者说目标检测)源码分析关键点
修行者_Yang
这个作者很懒,什么都没留下…
展开
-
endernewton/tf-faster-rcnn:候选框是如何跟真实框(ground truth)对应做bbox回归训练的?
1、在RPN网络里通过1*1预测anchors的偏移(rpn_bbox_pred); 2、在RPN网络里self._proposal_layer()—>proposal_layer_tf—>bbox_transform_inv_tf(anchors, rpn_bbox_pred)来预测anchors的坐标; 3、还是在RPN网络里self._anchor_target_layer()—...原创 2020-03-08 10:42:25 · 783 阅读 · 0 评论 -
endernewton/tf-faster-rcnn:RPN模块理解记录self._proposal_layer()与self._proposal_top_layer()函数区别
1.self._proposal_layer(): 主要功能:用于筛选网络计算出来的候选框,一般网络计算出来的候选框的数目为WHnum_anchors,W、H代表输入RPN网络特征层的宽、高,num_anchors代表每个特征点的锚框数量。self._proposal_layer()函数中使用非极大值抑制的方法来对网络计算出来的候选框进行筛选。非极大值抑制对应函数为:tf.image.non_ma...原创 2020-03-07 17:28:58 · 278 阅读 · 0 评论