自然语言处理NLP-100例 | 第一篇:如何用Python做情感分析?

本文分享了一个用Python进行文本情感分析的小案例。介绍了情感分析的定义,指出其可用于预测股市涨落。还说明了配置环境的步骤,使用SnowNLP库处理中文文本,进行分句和情感判别,最后告知可通过公众号获取源码和数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大家好,我是K同学啊~

今天给大家分享一个情感分析的小案例

在维基百科上,情感分析的定义是:

文本情感分析(也称为意见挖掘)是指用自然语言处理、文本挖掘以及计算机语言学等方法来识别和提取原素材中的主观信息。

情感分析不是炫技工具。它是闷声发大财的方法。早在2010年,就有学者指出,可以依靠Twitter公开信息的情感分析来预测股市的涨落,准确率高达87.6%!

配置环境

安装snownlp

pip install snownlp -i https://pypi.mirrors.ustc.edu.cn/simple/

WIN键+R 输入 jupyter notebook 打开我们的工作台

在这里插入图片描述
jupyter notebook界面

进入正题

我们使用的是 SnowNLP ,SnowNLP是一个用Python写的可以方便的处理中文文本内容类库,是受到了TextBlob的启发而写的。

开源地址:https://github.com/isnowfy/snownlp

准备好我们的文本

text = u"这本书很棒,这本书很差。"

导入我们的 SnowNLP

from snownlp import SnowNLP
s = SnowNLP(text)

进行分句处理

for sentence in s.sentences:
    print(sentence)

SnowNLP 对我们的第一句话进行判别

s1 = SnowNLP(s.sentences[0])
s1.sentiments

我的结果如下:

SnowNLP 对我们的第二句话进行判别

s2 = SnowNLP(s.sentences[1])
s2.sentiments

我的结果如下:

这个评分是什么意思呢?

我们通常将正面情感标为1,负面情感标为0,我们的sentiments值越接近1,正面的情感越强烈,反之同理。

情感分析似乎也没有那么难~

👇🏻 源码+数据 可通过扫一扫下方 公众号(K同学啊) 回复 【001】获取👇🏻
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

K同学啊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值