机器学习
unshaven111
这个作者很懒,什么都没留下…
展开
-
贝叶斯优缺点
朴素贝叶斯的主要优点有: 1)朴素贝叶斯模型有稳定的分类效率。 2)对小规模的数据表现很好,能处理多分类任务,适合增量式训练,尤其是数据量超出内存时,可以一批批的去增量训练。 3)对缺失数据不太敏感,算法也比较简单,常用于文本分类。 朴素贝叶斯的主要缺点有: 1) 理论上,朴素贝叶斯模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为朴素贝叶斯模型给定输出类别的情况下,假...原创 2018-11-14 11:39:16 · 14857 阅读 · 0 评论 -
svm
SVM 的推导、特点、优缺点、多分类问题及应用 作者:keepreder SVM有如下主要几个特点: (1) 非线性映射是SVM方法的理论基础,SVM利用内积核函数代替向高维空间的非线性映射; (2) 对特征空间划分的最优超平面是SVM的目标,最大化分类边际的思想是SVM方法的核心; (3) 支持向量是SVM的训练结果,在SVM分类决策中起决定作用的是支持向量。 (4) SVM 是一种有坚...转载 2018-11-28 23:41:10 · 1314 阅读 · 0 评论 -
关于adaboost
到这里,也许你已经对adaboost算法有了大致的理解。但是也许你会有个问题,为什么每次迭代都要把分错的点的权值变大呢?这样有什么好处呢?不这样不行吗? 这就是我当时的想法,为什么呢?我看了好几篇介绍adaboost 的博客,都没有解答我的疑惑,也许大牛认为太简单了,不值一提,或者他们并没有意识到这个问题而一笔带过了。然后我仔细一想,也许提高错误点可以让后面的分类器权值更高。然后看了adaboos...原创 2018-11-30 09:42:17 · 118 阅读 · 0 评论 -
Bagging和Boosting的区别(面试准备)
Baggging 和Boosting都是模型融合的方法,可以将弱分类器融合之后形成一个强分类器,而且融合之后的效果会比最好的弱分类器更好。 Bagging: 先介绍Bagging方法: Bagging即套袋法,其算法过程如下: 从原始样本集中抽取训练集。每轮从原始样本集中使用Bootstraping的方法抽取n个训练样本(在训练集中,有些样本可能被多次抽取到,而有些样本可能一次都没有被抽中)。共进...转载 2019-01-16 21:43:05 · 181 阅读 · 0 评论