自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(7)
  • 收藏
  • 关注

翻译 Task5:卷积神经网络基础

卷积神经网络基础介绍卷积神经网络的基础概念,主要是卷积层和池化层,并解释填充、步幅、输入通道和输出通道的含义。二维卷积层本节介绍的是最常见的二维卷积层,常用于处理图像数据。二维互相关运算二维互相关(cross-correlation)运算的输入是一个二维输入数组和一个二维核(kernel)数组,输出也是一个二维数组,其中核数组通常称为卷积核或过滤器(filter)。卷积核的尺寸通常小于输...

2020-02-19 21:09:07 181 1

翻译 Task4:机器翻译及相关技术

机器翻译和数据集机器翻译(MT):将一段文本从一种语言自动翻译为另一种语言,用神经网络解决这个问题通常称为神经机器翻译(NMT)。 主要特征:输出是单词序列而不是单个单词。 输出序列的长度可能与源序列的长度不同。import osos.listdir('/home/kesci/input/')[‘fraeng6506’, ‘d2l9528’, ‘d2l6239’]import sys...

2020-02-19 20:50:50 152

翻译 Task3:过拟合、欠拟合及其解决方案

softmax和分类模型1.softmax回归的基本概念2.如何获取Fashion-MNIST数据集和读取数据3.softmax回归模型的从零开始实现,实现一个对Fashion-MNIST训练集中的图像数据进行分类的模型4.使用pytorch重新实现softmax回归模型# import needed package%matplotlib inlinefrom IPytho...

2020-02-19 20:28:25 180

翻译 Task1和2:线性回归;Softmax与分类模型;多层感知机;文本预处理;语言模型;循环神经网络基础

线性回归1.1 模型所谓模型,即两种或两种以上变量间相互依赖的定量关系。例如:房价受其面积、地段与房龄等因素的制约1.2 数据集为了对某现象进行预测,需要已知该现象在一段时间内的确切数据。以期在该数据基础上面寻找模型参数来使模型的预测值与真实值的误差最小。在机器学习术语里,该数据集被称为训练数据集(training data set)或训练集(training set),其中个体被称为样...

2020-02-14 21:38:04 187

原创 Datawhale-3

1、信息论基础(熵 联合熵 条件熵 信息增益 基尼不纯度)熵:描述一个时间的不确定性联合熵:A与B同时发生的信息熵条件熵:在A发生的情况下B发生的信息熵信息增益:Gain为A为特征对训练数据集D的信息增益,它为集合D的经验熵H(D)与特征A给定条件下D的经验条件熵H(D|A)之差基尼不纯度:基尼不纯度,是指将来自集合中的某种结果随机应用在集合中,某一数据项的预期误差率2、决策...

2019-03-05 18:51:17 99

原创 Datawhale-2

1、逻辑回归与线性回归的联系与区别回归模型就是预测一个连续变量(如降水量,价格等)。在分类问题中,预测属于某类的概率,可以看成回归问题。这可以说是使用回归算法的分类方法。 直接使用线性回归的输出作为概率是有问题的,因为其值有可能小于0或者大于1,这是不符合实际情况的,逻辑回归的输出正是[0,1]区间。线性回归只能预测连续的值,分类算法输出为0和1。 线性回归中使用的是最小化平方误差损失函数...

2019-03-03 20:18:09 144

原创 DataWhale-1学习

机器学习的一些概念1、有监督、无监督、泛化能力、过拟合欠拟合(方差和偏差以及各自解决办法)、交叉验证有监督:训练集有类别标记(label) 无监督:训练集无类别标记(不知道训练结果) 泛化能力:机器学习模型对未知数据的预测能力,称为泛化(generalization)能力。 过拟合:模型复杂度太高,使得模型对训练样本...

2019-03-01 16:55:52 170

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除