卷积神经网络
小陈鸭嘤嘤嘤
这个作者很懒,什么都没留下…
展开
-
为模型选择正确的最后一层激活
问题类型 最后一层激活 损失函数 二分类问题 sigmoid binary_crossentropy 多分类、单标签问题 softmax categorical_crossenrtopy 多分类、多标签问题 sigmoid binary_crossentropy 回归到任意值 无 mse 回归到0-1范围内的值 ...原创 2020-05-31 16:47:07 · 319 阅读 · 0 评论 -
防止神经网络过拟合的方法
1 获取更多的训练数据2 减少网络容量3 添加权重正则化from keras import regularizersregularizers.l1(0.001)regularizers.l1_l2(l1=0.001, l2=0.001)4 添加 Dropoutmodel.add(layer.Dropout(0.5))...原创 2020-05-31 16:46:38 · 163 阅读 · 0 评论 -
卷积神经网络的基本部件
1 卷积操作方向:从左至右、自上而下。超参数:卷积核、卷积步长输入张量: 卷积核:权值共享特性:权重对不同位置的所有输入都是相同的。通常还会在上加入偏置项(bias term)。在误差反向传播时可针对该层权重和步偏置项设置随机梯度下降的学习率。当然根据实际问题需要,也可以将某层偏置项设置为全0,或将学习率设置为全0,以起到固定该层偏置或权重的作用。...原创 2019-07-08 22:45:59 · 333 阅读 · 0 评论 -
神经网络的数据表示
张量张量是一个数据容器。它包含的数据几乎都是数值数据,数字的容器。张量是矩阵像任意维度的推广。张量的维度(dimension)通常叫作轴(axis)标量(0D 张量) 向量(1D 张量) 矩阵(2D 张量)3D 张量:多个矩阵组合成一个新的数组,可以得到一个三维张量。可以看成是数字组成的立方体。更高维张量:将多个3D张量组合成一个数组,可以创建一个4D张量,以此类推。...原创 2020-05-31 16:43:57 · 277 阅读 · 0 评论 -
神经网络剖析
多个层链接在一起组成了网络,将输入数据映射为预测值。然后损失函数将这些预测值与目标进行比较,得到损失值,用于衡量网络预测值与预期结果的匹配程度。优化器使用这个损失值来更新网络的权重。层:层是一个数据处理模块,将一个或多个输入张量转换为一个或多个输出张量损失函数:在训练过程中需要将其最小化。它能够衡量当前任务是否成功优化器:决定如何基于损失函数对网络进行更新...原创 2020-05-31 16:44:37 · 96 阅读 · 0 评论 -
二分类问题
1 电影评论分类模型:带有relu激活的Dense层堆叠对于二分类问题,网络的最后一层应该是只有一个单元并使用sigmoid激活的Dense层,网络的输出应该是0-1的标量,表示概率值对于二分类问题的sigmoid标量输出,应该使用binary-crossentroy(二元交叉熵)损失函数实验:1 尝试增加或减少隐藏层的个数; 2 尝试使用更多或更少隐藏单元...原创 2020-05-31 16:45:20 · 1166 阅读 · 0 评论 -
数据集
1 MNIST-灰度手写数字集包含60000张训练图像和10000张测试图像。内置于keras库from keras.datasets import mnist2 IMDB-电影评论数据集包含来自互联网电影数据库的50000条严重两极分化的评论。数据集被分为用于训练的25000条和用于测试的25000条,训练集和测试集都包含50%的正面评论和50%的负面评论。内置于keras库...原创 2020-05-31 16:45:53 · 299 阅读 · 0 评论 -
多分类问题
新闻分类1对N个类别的数据点进行分类,网络的最后一层应该是大小为N的Dense层层2 对于单标签多分类问题,网络的最后一层应该使用softmax激活,这样可以输出在N个输出类别上的概率分布3 损失函数:分类交叉熵。将网络输出的概率分布与目标的真实分布之间的距离最小化4 处理多分类问题的标签有两种方法: 通过分类编码(one-hot编码)对标签进行编码,然后使用catego...原创 2020-05-31 16:45:34 · 436 阅读 · 0 评论 -
回归问题
波士顿房价预测损失函数:均方误差(MSE)分类问题和回归问题的损失函数不同,使用的评估指标也不同。评估指标:平均绝对误差(MAE)如果输入数据的特征具有不同的取值范围,应该先进性预处理,对每个特征单独进行缩放如果可用的数据很少,使用K折交叉验证可以可靠地评估模型,最好使用隐藏层较少的小型网络(一到两个),以免严重的过拟合...原创 2020-05-31 16:46:04 · 166 阅读 · 1 评论