MMDetection
文章平均质量分 79
该博客分专栏的介绍旷世开发的一个非常强大的目标检测框架-MMDectction。该博客会从模型原理和源码的角度分析这个框架,主要是为了见证自己的成长,同时也把自己学习到的知识分享出来,大家一起进步,一起努力。希望我们永远年轻,永远热泪盈眶。
满船清梦压星河HK
永远年轻,永远热泪盈眶!
消失一段时间,死磕c++中!
展开
-
【MMDetection 目标检测框架学习导航】
目录一、入门一、入门【环境配置/软件安装】win10配置mmdetection.入门篇一、各组件解读,配置文件解读.原创 2021-10-20 22:17:15 · 1659 阅读 · 0 评论 -
【mmDetection框架解读】入门篇四、一些好用的工具梳理(持续更新...)
mmdetection原创 2022-11-19 16:22:31 · 630 阅读 · 0 评论 -
【mmDetection框架解读】入门篇三、VOC数据集转COCO数据集,在MMDetection中成功运行
mmdetection原创 2022-11-18 22:32:14 · 2580 阅读 · 5 评论 -
【环境配置/软件安装】win10配置mmdetection
1、下载MMDetection地址下载链接 可以在branch中选择对应的下载版本,也可以直接下载lastest的版本。建议使用新的版本。MMDetection VS mmcv记下你下的MMDetection对应的mmcv版本后面要用到2、配置pytorch+torchvision地址下载链接 根据自己的cuda版本选择torch版本。3、安装mmcv打开 mmcv github官网 可以看到下面这个表格根据自己的torch版本和cuda版本(或者cpu) 点击对应的三角形图标(没有图标的说明原创 2021-10-18 15:47:32 · 1438 阅读 · 0 评论 -
【mmDetection框架解读】入门篇一、各组件解读,配置文件解读
目录前言一、mmDetection构建流程和思想二、训练核心组件2.1、Backbone2.2、Neck2.3、Head2.4、Enhance2.5、BBox Assigner2.6、BBox Sampler2.7、BBox Encoder2.8、Loss2.9、Training trick三、测试核心组件3.1、BBox Decoder3.2、BBox PostProcess3.3、Testing Tricks四、搭建Faster rcnn模型配置文件Reference前言我下的是在 2021.09.原创 2021-10-20 22:08:36 · 6764 阅读 · 1 评论 -
【mmDetection框架解读】入门篇二、训练自己的数据集
一、准备自己的xml格式数据集首先要准备一份xml配置的数据集,数据集打完标注文件如下:ImageSets中暂为空,再执行【划分训练集、验证集和测试集】 ,划分后如下图:再将xml格式数据集转为txt文件格式【数据集格式转换xml2txt】:整合成最终数据集:images是数据集的所有图片;labels是数据集的所有txt标签数据;train.txt是训练集的所有文件名;数据集放在mm/datasets下, datasets与mmdetection-master代码同级:二、txt格原创 2021-10-23 21:08:19 · 2723 阅读 · 0 评论 -
【MMCV 源码解读】一、Config(配置文件相关)
目录前言一、通过dict生成config1.1、字典对象实现属性访问1.2、字典对象 pretty 输出1.3、@property二、通过配置文件生成 config前言一、通过dict生成config示例a.py:from mmcv import Configcfg = Config(dict(a=1, b=dict(b1=[0, 1])))print(cfg) # Config (path: None): {'a': 1, 'b': {'b1': [0, 1]}}源码实现:clas原创 2021-11-23 22:12:21 · 4729 阅读 · 1 评论 -
【MMDetection 源码解读之yolov3】Neck - FPN
目录前言一、FPN总结前言这部分接着前一篇文章 【MMDetection 源码解读 yolov3】Backbone - Darknet53 继续往后讲。搭建完了主干特征提取模块,接着就是搭建yolov3的特征融合模块,这部分yolov3使用的是FPN(特征金字塔)的这样一个Up-bottom的结构,能够在增加较少计算量的前提下融合低分辨率语义信息较强的特征图和高分辨率语义信息较弱但空间信息丰富的特征图。下面图画线部分为FPN具体的一个结构【yolov3 红线标记部分为Neck-FPN部分】一、原创 2021-12-10 20:26:03 · 4113 阅读 · 0 评论 -
【MMDetection 源码解读之yolov3】Backbone - Darknet53.
目录前言一、配置文件二、Darknet2.1、Darknet类介绍和全局参数设置2.2、__init__初始化2.3、前向推理2.4、搭建stage1-5总结前言这个博客会讲解MMDetection关于Darknet53这个Backbone的实现源码,之前其实也学了很多个版本的yolov3代码了,但是都是基于各种配置文件的源码,没有完整的网络搭建代码,所以在做实验想改yolov3的网络的时候,会发现自己无从下手,改配置文件,不知道从哪里开始改。刚好最近又在学习MMDetection,所以就打算从这个最简原创 2021-12-10 17:17:31 · 3284 阅读 · 1 评论