机器学习
机器学习
healer-c
让灵魂和身体总有一个在路上
展开
-
范数
L0L_0L0 范数:∣∣ω∣∣0=#(xi≠0)||\omega||_0= \#(x_i \not=0)∣∣ω∣∣0=#(xi=0)(非零元素的个数)L1L_1L1 范数:∣∣ω∣∣1=∑i=1d∣xi∣||\omega||_1=\sum_{i=1}^d|x_i|∣∣ω∣∣1=∑i=1d∣xi∣ (绝对值之和)L2L_2L2 范数:∣ω2∣∣=(∑i=1dxi2)12|\omega_2|| =(\sum_{i=1}^dx_i^2)^{\frac{1}{2}}∣ω2∣∣=(∑i=原创 2020-11-30 09:24:06 · 205 阅读 · 0 评论 -
交叉熵损失函数学习笔记
文章目录交叉熵损失函数1 信息量2 信息熵3 相对熵(KL散度)4 交叉熵4.1 二分类4.2 多分类5 小结6. 参考资料交叉熵损失函数交叉熵是信息论中的一个重要概念,主要用户度量两个概率分布间的差异性,要理解交叉熵,需要了解下面几个概念。1 信息量信息论奠基人香农认为信息是用来消除随机不确定性的东西,也就是说衡量信息量的大小就看信息消除不确定性的程度。“太阳从东边升起”,这条信息没有减少不确定性,因为太阳一直都是从东边升起,所以这条信息的信息量为0。“2020年中国队成功进入世界杯”,因为中原创 2020-11-24 10:54:05 · 1596 阅读 · 0 评论 -
AutoRec 模型笔记
文章目录AutoRec 模型1. AutoRec 模型定义2. 自编码器3. 模型训练4. 模型工作过程4.1 I-AutoRec 和 U-AutoRec 的区别5. AutoRec的局限性参考资料AutoRec 模型1. AutoRec 模型定义AutoRec 是一个基于自编码器的协同过滤模型,该模型将深度学习中的神经网络和推荐结合。2. 自编码器作用:对于输入向量 r, 通过自编码器后,将得到一个和 r 很接近的向量。对于通过自编码器的数据,相当于取出输入数据的“精华”,即自编码器完成了原创 2020-11-21 21:00:59 · 459 阅读 · 0 评论 -
python实现感知机的对偶形式
文章目录一、基本原理二、实现思路三、源代码四、代码运行结果一、基本原理上篇博客(python 实现感知机)简单描述了感知机的实现,本文主要讲述感知机对偶形式的实现。在感知机原始形式的训练中,若将 ω\omegaω 和 b 的值分别初始化为 [0., 0.]、0,ω\omegaω 的更新过程则为 ω\omegaω += 学习率 * 标签值 * 点的坐标,b 的更新过程为 b += 学习率 * 标签值,可以看出 ω\omegaω 和 b 都是增量更新的(逐步修改 ω\omegaω 和 b 的值)。我们可原创 2020-11-03 21:54:40 · 1850 阅读 · 0 评论 -
python 实现感知机(perceptron)
文章目录一、基本原理二、实现思路三、源代码四、代码运行结果一、基本原理感知机(perceptron)是一个二类分类的线性分类模型,其几何意义是寻找一个超平面将点(特征空间)划分为正类和负类。本文以二维平面为例,实现一个简单的感知机模型。二、实现思路在二维平面中,感知机的训练过程即寻找一条直线,这条直线可以将平面中线性可分的点分离开,代码实现思路如下:生成训练数据:为了保证数据是线性可分的,在生成数据前确定两个点(如:(2, 2)、(6, 6)),在这两个点的周围随机生成数据,分别给这两个点周围原创 2020-11-03 15:31:29 · 3088 阅读 · 0 评论