TCA-JDA 公式推导学习记录

本文详细记录了TCA和JDA的公式推导过程,从中心矩阵和核函数理解开始,逐步解析TCA的优化函数和JDA的公式。通过拉格朗日乘子法进行求解,探讨了矩阵迹求导和特征值求解。同时,阐述了ZXY工作的JDA+LPP解析,包括LPP公式推导和SVD求解。文章还指出了不同资料中关于迹使用存在的差异,并提出疑问,最终展示了如何在MATLAB中使用eigs求解特征向量矩阵。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

仅便于自己查找,已关闭打赏

主要目的是理解TCA和LPP各自的公式推导,并各自对应代码中的求解方法,掌握上述两部分后结合二者(修改目标函数的求解公式),之后理一遍zxy的论文公式推导。

1.涉及知识

中心矩阵:https://orzyt.cn/posts/centering-matrix/

核函数理解(SVM模型):https://zhuanlan.zhihu.com/p/261061617

2.TCA公式推导到优化函数:https://zhuanlan.zhihu.com/p/26764147

其中 参考的MMD公式:https://blog.csdn.net/weixin_38233103

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值