教材中将 a 11 u x 1 x 1 + 2 a 12 u x 1 x 2 + a 22 u x 2 x 2 a_{11}u_{x_1x_1}+2a_{12}u_{x_1x_2}+a_{22}u_{x_2x_2} a11ux1x1+2a12ux1x2+a22ux2x2写成矩阵形式 a 11 u x 1 x 1 + 2 a 12 u x 1 x 2 + a 22 u x 2 x 2 a_{11}u_{x_1x_1}+2a_{12}u_{x_1x_2}+a_{22}u_{x_2x_2} a11ux1x1+2a12ux1x2+a22ux2x2=tr(A D 2 D^2 D2u),
如果将其用另一种写法写为 a 11 u x 1 x 1 + 2 a 12 u x 1 x 2 + a 22 u x 2 x 2 a_{11}u_{x_1x_1}+2a_{12}u_{x_1x_2}+a_{22}u_{x_2x_2} a11ux1x1+2a12ux1x2+a22ux2x2= ∇ x T A ∇ x \nabla_x^TA\nabla_x ∇xTA∇x(u),则二阶偏微分化简成标准型过程能在形式上更好地类比于线性代数中二次型的化简成标准型过程。
1.线性变量代换
( ξ 1 ξ 2 ) = ( b 11 b 21 b 12 b 22 ) ( x 1 x 2 ) \begin{pmatrix} \xi_1\\ \xi_2 \end{pmatrix} =\begin{pmatrix} b_{11} &b_{21} \\ b_{12} &b_{22} \end{pmatrix} \begin{pmatrix} x_1\\ x_2 \end{pmatrix} (ξ1ξ2)=(b11b12b21b22)(x1x2) 即 即 即 ξ = B T x \xi=B^Tx ξ=BTx
则有 ( ∂ f ∂ x 1 ∂ f ∂ x 2 ) = ( b 11 b 12 b 21 b 22 ) ( ∂ f ∂ ξ 1 ∂ f ∂ ξ 2 ) 即 ∇ x f = B ∇ ξ f \begin{pmatrix} \frac{\partial f}{\partial x_1}\\ \frac{\partial f}{\partial x_2} \end{pmatrix} =\begin{pmatrix} b_{11} &b_{12} \\ b_{21} &b_{22} \end{pmatrix} \begin{pmatrix} \frac{\partial f}{\partial \xi_1}\\ \frac{\partial f}{\partial \xi_2} \end{pmatrix}即\nabla_x f=B\nabla_\xi f (∂x1∂f∂x2∂f)=(b11b21b12b22)(∂ξ1∂f∂ξ2</