二阶常系数偏微分线性变量代换化简

本文探讨了二阶常系数偏微分线性变量代换的化简方法,通过矩阵形式和线性代数知识,将偏微分方程主部转化为类似于二次型的标准型。介绍了线性变量代换、一般变量代换及其在二阶偏微分方程中的应用,提供了一种简化计算的途径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

二阶偏微分主部另一种矩阵形式处理的探讨
(只适用于常系数的情况)

教材中将 a 11 u x 1 x 1 + 2 a 12 u x 1 x 2 + a 22 u x 2 x 2 a_{11}u_{x_1x_1}+2a_{12}u_{x_1x_2}+a_{22}u_{x_2x_2} a11ux1x1+2a12ux1x2+a22ux2x2写成矩阵形式 a 11 u x 1 x 1 + 2 a 12 u x 1 x 2 + a 22 u x 2 x 2 a_{11}u_{x_1x_1}+2a_{12}u_{x_1x_2}+a_{22}u_{x_2x_2} a11ux1x1+2a12ux1x2+a22ux2x2=tr(A D 2 D^2 D2u),

如果将其用另一种写法写为 a 11 u x 1 x 1 + 2 a 12 u x 1 x 2 + a 22 u x 2 x 2 a_{11}u_{x_1x_1}+2a_{12}u_{x_1x_2}+a_{22}u_{x_2x_2} a11ux1x1+2a12ux1x2+a22ux2x2= ∇ x T A ∇ x \nabla_x^TA\nabla_x xTAx(u),则二阶偏微分化简成标准型过程能在形式上更好地类比于线性代数中二次型的化简成标准型过程。


1.线性变量代换

( ξ 1 ξ 2 ) = ( b 11 b 21 b 12 b 22 ) ( x 1 x 2 ) \begin{pmatrix} \xi_1\\ \xi_2 \end{pmatrix} =\begin{pmatrix} b_{11} &b_{21} \\ b_{12} &b_{22} \end{pmatrix} \begin{pmatrix} x_1\\ x_2 \end{pmatrix} (ξ1ξ2)=(b11b12b21b22)(x1x2) 即 即 ξ = B T x \xi=B^Tx ξ=BTx

则有 ( ∂ f ∂ x 1 ∂ f ∂ x 2 ) = ( b 11 b 12 b 21 b 22 ) ( ∂ f ∂ ξ 1 ∂ f ∂ ξ 2 ) 即 ∇ x f = B ∇ ξ f \begin{pmatrix} \frac{\partial f}{\partial x_1}\\ \frac{\partial f}{\partial x_2} \end{pmatrix} =\begin{pmatrix} b_{11} &b_{12} \\ b_{21} &b_{22} \end{pmatrix} \begin{pmatrix} \frac{\partial f}{\partial \xi_1}\\ \frac{\partial f}{\partial \xi_2} \end{pmatrix}即\nabla_x f=B\nabla_\xi f (x1fx2f)=(b11b21b12b22)(ξ1fξ2</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值