批量梯度下降(BGD)、随机梯度下降(SGD)以及小批量梯度下降(MBGD)的理解

  梯度下降法作为机器学习中较常使用的优化算法,其有着三种不同的形式:批量梯度下降(Batch Gradient Descent)、随机梯度下降(Stochastic Gradient Descent)以及小批量梯度下降(Mini-Batch Gradient Descent)。其中小批量梯度下降法也常用在深度学习中进行模型的训练。接下来,我们将对这三种不同的梯度下降法进行理解。
  为了便于理解,这里我们将使用只含有一个特征的线性回归来展开。此时线性回归的假设函数为:
h θ ( x ( i ) ) = θ 1 x ( i ) + θ 0 h_{\theta} (x^{(i)})=\theta_1 x^{(i)}+\theta_0 hθ(x(i))=θ1x(i)+θ0
  其中 i = 1 , 2 , . . . , m i=1,2,...,m i=1,2,...,m 表示样本数。
  对应的目标函数(代价函数)即为:
   J ( θ 0 , θ 1 ) = 1 2 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m}(h_{\theta}(x^{(i)}) - y^{(i)})^2 J(θ0,θ1)=2m1i=1m(hθ(x(i))y(i))2
  下图为 J ( θ 0 , θ 1 ) J(\theta_0,\theta_1) J(θ0,θ1)与参数 θ 0 , θ 1 \theta_0,\theta_1 θ0,θ1的关系的图:
  



1、批量梯度下降(Batch Gradient Descent,BGD)


  批量梯度下降法是最原始的形式,它是指在每一次迭代时使用所有样本来进行梯度的更新。从数学上理解如下:
  (1)对目标函数求偏导:
   Δ J ( θ 0 , θ 1 ) Δ θ j = 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x j ( i ) \frac{\Delta J(\theta_0,\theta_1)}{\Delta \theta_j} = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)})-y^{(i)})x_j^{(i)} ΔθjΔJ(θ0,θ1)=m1i=1m(hθ(x(i))y(i))xj(i)
    其中 i = 1 , 2 , . . . , m i=1,2,...,m i=1,2,...,m表示样本数, j = 0 , 1 j=0,1 j=0,1 表示特征数,这里我们使用了偏置项 x 0 ( i ) = 1 x_0^{(i)} = 1 x0(i)=1
  (2)每次迭代对参数进行更新:
   θ j : = θ j − α 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x j ( i ) \theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)})-y^{(i)})x_j^{(i)} θj:=θjαm1i=1m(hθ(x(i))y(i))xj(i)
   注意这里更新时存在一个求和函数,即为对所有样本进行计算处理,可与下文SGD法进行比较。
   伪代码形式为:
    repeat
    {
       θ j : = θ j − α 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x j ( i ) ( f o r   j = 0 , 1 ) \theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)})-y^{(i)})x_j^{(i)}(for\ j =0,1) θj:=θjαm1i=1m(hθ(x(i))y(i))xj(i)(for j=0,1)
    }
    优点:
    (1)一次迭代是对所有样本进行计算,此时利用矩阵进行操作,实现了并行。
    (2)由全数据集确定的方向能够更好地代表样本总体,从而更准确地朝向极值所在的方向。当目标函数为凸函数时,BGD一定能够得到全局最优。
    缺点:
    (1)当样本数目 m 很大时,每迭代一步都需要对所有样本计算,训练过程会很慢。
    从迭代的次数上来看,BGD迭代的次数相对较少。其迭代的收敛曲线示意图可以表示如下:
  



2、随机梯度下降(Stochastic Gradient Descent,SGD)


  随机梯度下降法不同于批量梯度下降,随机梯度下降是每次迭代使用一个样本来对参数进行更新。使得训练速度加快。
  对于一个样本的目标函数为:
J ( i ) ( θ 0 , θ 1 ) = 1 2 ( h θ ( x ( i ) ) − y ( i ) ) 2 J^{(i)}(\theta_0,\theta_1) = \frac{1}{2}(h_{\theta}(x^{(i)})-y^{(i)})^2 J(i)(θ0,θ1)=21(hθ(x(i))y(i))2
   (1)对目标函数求偏导:
Δ J ( i ) ( θ 0 , θ 1 ) θ j = ( h θ ( x ( i ) ) − y ( i ) ) x j ( i ) \frac{\Delta J^{(i)}(\theta_0,\theta_1)}{\theta_j} = (h_{\theta}(x^{(i)})-y^{(i)})x^{(i)}_j θjΔJ(i)(θ0,θ1)=(hθ(x(i))y(i))xj(i)
   (2)参数更新
θ j : = θ j − α ( h θ ( x ( i ) ) − y ( i ) ) x j ( i ) \theta_j := \theta_j - \alpha (h_{\theta}(x^{(i)})-y^{(i)})x^{(i)}_j θj:=θjα(hθ(x(i))y(i))xj(i)

    注意,这里不再有求和符号
    伪代码形式为:
    repeat
    {
      for i=1,…,m
      {
         θ j : = θ j − α ( h θ ( x ( i ) ) − y ( i ) ) x j ( i ) ( f o r   j = 0 , 1 ) \theta_j := \theta_j -\alpha (h_{\theta}(x^{(i)})-y^{(i)})x_j^{(i)}(for\ j =0,1) θj:=θjα(hθ(x(i))y(i))xj(i)(for j=0,1)
      }
    }

  优点:
  (1)由于不是在全部训练数据上的损失函数,而是在每轮迭代中,随机优化某一条训练数据上的损失函数,这样每一轮参数的更新速度大大加快。
  缺点:
  (1)准确度下降。由于即使在目标函数为强凸函数的情况下,SGD仍旧无法做到线性收敛。
  (2)可能会收敛到局部最优,由于单个样本并不能代表全体样本的趋势。
  (3)不易于并行实现。

  解释一下为什么SGD收敛速度比BGD要快:
  答:这里我们假设有30W个样本,对于BGD而言,每次迭代需要计算30W个样本才能对参数进行一次更新,需要求得最小值可能需要多次迭代(假设这里是10);而对于SGD,每次更新参数只需要一个样本,因此若使用这30W个样本进行参数更新,则参数会被更新(迭代)30W次,而这期间,SGD就能保证能够收敛到一个合适的最小值上了。也就是说,在收敛时,BGD计算了 10 × 30 W 10×30W 10×30W 次,而SGD只计算了 1 × 30 W 1×30W 1×30W次。
  从迭代的次数上来看,SGD迭代的次数较多,在解空间的搜索过程看起来很盲目。其迭代的收敛曲线示意图可以表示如下:


3、小批量梯度下降(Mini-Batch Gradient Descent, MBGD)


  小批量梯度下降,是对批量梯度下降以及随机梯度下降的一个折中办法。其思想是:每次迭代 使用 ** batch_size** 个样本来对参数进行更新。
  这里我们假设 b a t c h s i z e = 10 batchsize=10 batchsize=10 ,样本数 m = 1000 m=1000 m=1000
  伪代码形式为:
  repeat
  {
    for i=1,11,21,31,…,991
    {
       θ j : = θ j − α 1 10 ∑ k = i ( i + 9 ) ( h θ ( x ( k ) ) − y ( k ) ) x j ( k ) ( f o r   j = 0 , 1 ) \theta_j := \theta_j - \alpha \frac{1}{10} \sum_{k=i}^{(i+9)}(h_{\theta}(x^{(k)})-y^{(k)})x_j^{(k)}(for\ j =0,1) θj:=θjα101k=i(i+9)(hθ(x(k))y(k))xj(k)(for j=0,1)
    }
  }

  优点:
  (1)通过矩阵运算,每次在一个batch上优化神经网络参数并不会比单个数据慢太多。
  (2)每次使用一个batch可以大大减小收敛所需要的迭代次数,同时可以使收敛到的结果更加接近梯度下降的效果。(比如上例中的30W,设置batch_size=100时,需要迭代3000次,远小于SGD的30W次)
  (3)可实现并行化。
  缺点:
  (1)batch_size的不当选择可能会带来一些问题。

  batch_size的选择带来的影响:
  (1)在合理地范围内,增大batch_size的好处:
    a. 内存利用率提高了,大矩阵乘法的并行化效率提高。
    b. 跑完一次 epoch(全数据集)所需的迭代次数减少,对于相同数据量的处理速度进一步加快。
    c. 在一定范围内,一般来说 Batch_Size 越大,其确定的下降方向越准,引起训练震荡越小。
  (2)盲目增大batch_size的坏处:
    a. 内存利用率提高了,但是内存容量可能撑不住了。
    b. 跑完一次 epoch(全数据集)所需的迭代次数减少,要想达到相同的精度,其所花费的时间大大增加了,从而对参数的修正也就显得更加缓慢。
    c. Batch_Size 增大到一定程度,其确定的下降方向已经基本不再变化。

  下图显示了三种梯度下降算法的收敛过程:
  



  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值