Namenode、Datanode、Jobtracker、Tasktracker区别

本文详细介绍了Hadoop集群的工作原理及组成部分,包括master/slave模式下的namenode、jobtracker、datanode和tasktracker的角色分配。同时阐述了jobclient如何提交任务至jobtracker进行调度,以及tasktracker执行具体任务的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. hadoop的集群是基于master/slave模式,namenode和jobtracker属于master,datanode和tasktracker属于slave,master只有一个,而slave有多个.
  2. SecondaryNameNode内存需求和NameNode在一个数量级上,所以通常secondary NameNode(运行在单独的物理机器上)和 NameNode 运行在不同的机器上。
  3. JobTracker对应于NameNode,TaskTracker对应于DataNode.
  4. DataNode和NameNode是针对数据存放来而言的.JobTracker和TaskTracker是对于MapReduce执行而言的.
  • mapreduce中几个主要概念,mapreduce 整体上可以分为这么几条执行线索:jobclient,JobTracker与TaskTracker
  • 1、JobClient会在用户端通过JobClient类将已经配置参数打包成jar文件的应用存储到hdfs,并把路径提交到Jobtracker,然后由JobTracker创建每一个Task(即 MapTask 和 ReduceTask) 并将它们分发到各个TaskTracker服务中去执行。
  • 2、JobTracker是一master服务,软件启动之后JobTracker接收Job,负责调度Job的每一个子任务。task运行于TaskTracker上,并监控它们,如果发现有失败的task就重新运行它。一般情况应该把JobTracker 部署在单独的机器上
  • 3、TaskTracker是运行在多个节点上的slaver服务。TaskTracker主动与JobTracker通信,接收作业,并负责直接执行每一个任务。 TaskTracker 都需要运行在HDFS的DataNode上。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值