TASS 2019: Data Augmentation and Robust Embeddings for Sentiment Analysis

13 篇文章 0 订阅
5 篇文章 0 订阅

abstract

主要任务是在西班牙tweet中进行情感分类,主要使用到bags-of-words,bag-of-characters和tweet embedding。

尤其是训练了单词前缀embedding(subword-aware word embedding)的鲁棒性和使用权重均衡策略(weighted-averageing strategy)计算了tweet的表示法。使用两种数据增强技术来处理数据稀缺性问题。双向交叉增强(two-way-translation)和实例交叉增强(instance crossover augmentation),一种结合一半tweet生成新的实例的新技术。

训练了线性分类器和集成模型。

Introduction

  • 任务
  • 数据集
  • 基本思路:分成两个子任务,在单语言子任务中,系统必须在同一数据集上进行训练和测试。在交叉语言任务中,系统必须使用非用于测试国家的语言数据集进行测试。
  • 介绍数据怎么处理,技术大概有哪些
  • 其他工作

Techniques and Resources

  • 数据处理
  • Bags of words and characters
  • Word Embeddings
  • Tweet Embeddings
  • Data Augmentation witg Two-Wag Translation
  • Data Augmentation with Instance Crossover

Experiments

介绍使用的环境,模型,包等等。

  • System Development:系统的构建,探索模型的好坏,超参数的设置,实验结果:分类报告,混淆矩阵
  • Subtask 1: Monolingual Experiments:
  • Subtask 2: Crosslingual Experiments
  • Ablation Tests :控制变量法

Conclusions

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值