TASS 2020: TWilBERT for Sentiment Analysis and Emotion Detection in Spanish Tweets

本文探讨了如何利用预训练的BERT模型对西班牙语推文进行情感分类,特别关注了双向BERT在任务2中的应用。对比了TWilBERT,一种针对tweet领域优化的BERT模型,与传统Deep Averaging Networks(DAN)模型。研究了数据集中情绪分布偏斜并介绍了实验设计和结果分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Abstract

使用Bert在西班牙语tweet中进行情感分类,双向Bert

Introduction

使用模型bert,基于对西班牙语tweet的Bert模型的预训练适应性的微调。介绍本文结构,第二节介绍解决了的任务,第三节提出了一些设想,和baseline model。第四节,对实验进行评估评价和实验的结果进行分析,最后第5节显示了一些结论和未来的工作。

对数据集进行分析

In Table 2 the tweet distribution for each
emotion in the training set of the task 2 is shown. In this case, there is a large bias towards the
class Others that acts like a sink of unconsidered emotions or combinations among emotions.
The less frequent class, by far, is the Fear class.

Task description

Task1:
Task2:The second task is also a single-label classification task
but with 7 different emotions ( joy , sadness , anger , surprise , disgust , fear and others ).
 

Systems

  • Deep Averaging Networks:以前用过的版本作为baseline,该模型在averaging word embedding的基础上运用 feed-forward networks。
  • TWilBERT:TWilBERT是在tweet领域中用于训练,评估,和微调的Bert模型,介绍一下TWilBERT,并与multi-lingual Bert进行比较,说明TWilBERT的优点。

Experimental Word

TwilBert与baseline(DAN)通过不同的设置进行尽可能公平的对比。
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值