Abstract
使用Bert在西班牙语tweet中进行情感分类,双向Bert
Introduction
使用模型bert,基于对西班牙语tweet的Bert模型的预训练适应性的微调。介绍本文结构,第二节介绍解决了的任务,第三节提出了一些设想,和baseline model。第四节,对实验进行评估评价和实验的结果进行分析,最后第5节显示了一些结论和未来的工作。
对数据集进行分析
In Table
2
the tweet distribution for each
emotion in the training set of the task 2 is shown. In this case, there is a large bias towards the
class
Others
that acts like a sink of unconsidered emotions or combinations among emotions.
The less frequent class, by far, is the
Fear
class.
Task description
Task1:
Task2:The second task is also a single-label classification task
but with 7 different emotions (
joy
,
sadness
,
anger
,
surprise
,
disgust
,
fear
and
others
).
Systems
- Deep Averaging Networks:以前用过的版本作为baseline,该模型在averaging word embedding的基础上运用 feed-forward networks。
- TWilBERT:TWilBERT是在tweet领域中用于训练,评估,和微调的Bert模型,介绍一下TWilBERT,并与multi-lingual Bert进行比较,说明TWilBERT的优点。
Experimental Word
TwilBert与baseline(DAN)通过不同的设置进行尽可能公平的对比。