近世代数之集合与映射
近世代数为密码学基础,因此想要补充一下这方面的相关概念与性质,因此进行记录与分享。主要参考书籍为《近世代数基础》-张禾瑞
集合:(有限或者无限个)固定事物的全体叫做一个集合。
元素:组成一个集合的事物叫做这个集合的元素
空集合:一个没有元素的集合叫做空集合
子集:若集合B的每一个元素都属于集合A,则说,B为A的子集,可记为
B
∈
A
B\in A
B∈A;否则,B不是A的子集,记为
B
∉
A
B\notin A
B∈/A。
真子集:若集合B是集合A的子集,而且至少有一个A的元素不属于B,则说B为A的真子集。
交集:集合A与集合B的所有共同元组成的集合叫做AB的交集,记为
A
∩
B
A\cap B
A∩B。
并集:由至少属于集合A和B之一的元素组成的集合叫做A和B的并集,记为
A
∪
B
A\cup B
A∪B。
集合运算规则:
1、交换律:
A
∪
B
=
B
∪
A
A\cup B=B\cup A
A∪B=B∪A;
A
∩
B
=
B
∩
A
A\cap B=B\cap A
A∩B=B∩A
2、结合律:
A
∪
(
B
∪
C
)
=
(
A
∪
B
)
∪
C
A\cup (B\cup C)=(A\cup B)\cup C
A∪(B∪C)=(A∪B)∪C;
A
∩
(
B
∩
C
)
=
(
A
∩
B
)
∩
C
A\cap (B\cap C)=(A\cap B)\cap C
A∩(B∩C)=(A∩B)∩C
3、幂等律:
A
∪
A
=
A
A\cup A= A
A∪A=A;
A
∩
A
=
A
A\cap A= A
A∩A=A
4、分配律:
A
∩
(
B
∪
C
)
=
(
A
∩
B
)
∪
(
A
∩
C
)
A\cap (B\cup C)=(A\cap B)\cup (A\cap C)
A∩(B∪C)=(A∩B)∪(A∩C);
A
∪
(
B
∩
C
)
=
(
A
∪
B
)
∩
(
A
∪
C
)
A\cup(B\cap C)=(A\cup B)\cap (A\cup C)
A∪(B∩C)=(A∪B)∩(A∪C)
例题(均自己回答的,仅供参考)
1、一列开区间的交是否还是开区间?答:不一定,例如
A
n
=
(
−
1
/
n
,
1
/
n
)
A_n=(-1/n,1/n)
An=(−1/n,1/n),则
⋂
n
=
1
∞
A
n
=
[
0
]
\bigcap_{n=1}^{\infty } A_n=[0]
⋂n=1∞An=[0]。
2、一列闭区间的并是否还是闭区间?答:不一定,例如
A
n
=
[
−
1
/
n
,
2
]
A_n=[-1/n,2]
An=[−1/n,2],则
⋂
n
=
1
∞
A
n
=
0
\bigcap_{n=1}^{\infty } A_n={0}
⋂n=1∞An=0。
映射:对于n个集合
A
i
,
i
=
1
,
.
.
.
,
n
A_i,i=1,...,n
Ai,i=1,...,n和另外一个集合D。假如通过一个法则
ϕ
\phi
ϕ,对于任何一个
A
1
×
A
2
×
.
.
.
×
A
n
A_1 \times A_2 \times ...\times A_n
A1×A2×...×An的元(
a
1
,
a
2
,
.
.
.
,
a
n
a_1,a_2,...,a_n
a1,a2,...,an)(
a
i
∈
A
i
a_i \in A_i
ai∈Ai),都能得到唯一的
D
D
D的一个映射**;元
d
d
d叫做元
a
1
,
a
2
,
.
.
.
,
a
n
a_1,a_2,...,a_n
a1,a2,...,an在映射
ϕ
\phi
ϕ之下的象;元(
a
1
,
a
2
,
.
.
.
,
a
n
a_1,a_2,...,a_n
a1,a2,...,an)叫做元
d
d
d在映射
ϕ
\phi
ϕ之下的逆象。
映射关系可记为
ϕ
:
(
a
1
,
a
2
,
.
.
.
,
a
n
)
→
d
=
ϕ
(
a
1
,
a
2
,
.
.
.
,
a
n
)
\phi :(a_1,a_2,...,a_n)\to d=\phi (a_1,a_2,...,a_n)
ϕ:(a1,a2,...,an)→d=ϕ(a1,a2,...,an)
总结:映射一定是每一个元在映射关系下有且唯一有一个象。
代数运算:一个
A
×
B
A \times B
A×B到
D
D
D的映射叫做一个
A
×
B
A \times B
A×B到
D
D
D的代数运算。可以由
∘
\circ
∘来表示:
(
a
,
b
)
→
d
=
∘
(
a
,
b
)
(a,b)\to d=\circ (a,b)
(a,b)→d=∘(a,b)。为了方便起见,可写成
(
a
,
b
)
→
d
=
a
∘
b
(a,b)\to d=a \circ b
(a,b)→d=a∘b。
二元运算:假如
∘
\circ
∘是一个
A
×
A
A\times A
A×A到
A
A
A的代数运算。我们就说,集合
A
A
A对于代数运算
∘
\circ
∘来说是闭的,也就是说
∘
\circ
∘是
A
A
A的代数运算或二元运算。
结合律:一个集合
A
A
A的代数运算
∘
\circ
∘适合结合律,假如对于
A
A
A的任何三个元
a
,
b
,
c
a,b,c
a,b,c来说都有,
(
a
∘
b
)
∘
c
=
a
∘
(
b
∘
c
)
(a\circ b)\circ c= a\circ (b\circ c)
(a∘b)∘c=a∘(b∘c)。
定义:假如对于
A
A
A的
n
n
n个固定元
a
1
,
a
2
,
.
.
.
,
a
n
a_1,a_2,...,a_n
a1,a2,...,an来说,所有的
π
(
a
1
,
.
.
,
a
n
)
\pi(a_1,..,a_n)
π(a1,..,an)都相等,我们就可以由这些步骤可以得到的唯一结果,用
a
1
∘
a
2
∘
.
.
.
∘
a
n
a_1\circ a_2\circ ...\circ a_n
a1∘a2∘...∘an来表示。
交换律:一个集合
A
A
A的代数运算
∘
\circ
∘适合于交换律,假如对于
A
A
A的任何两个元
a
,
b
a,b
a,b来说,都有
a
∘
b
=
b
∘
a
a\circ b=b\circ a
a∘b=b∘a。
结合律与交换律都是同一种代数运算发生关系。分配律师两种代数运算发生关系的一种规律。
第一分配律:如果对于
B
B
B的任何
b
b
b,
A
A
A的任何
a
1
,
a
2
,
.
.
.
,
a
n
a_1,a_2,...,a_n
a1,a2,...,an来说满足
b
⊙
(
a
1
⊕
a
2
)
=
(
b
⊙
a
1
)
⊕
(
b
⊙
a
2
)
b\odot \left ( a_1\oplus a_2 \right ) =\left ( b\odot a_1 \right ) \oplus \left ( b\odot a_2 \right )
b⊙(a1⊕a2)=(b⊙a1)⊕(b⊙a2),则说运算
⊕
,
⊙
\oplus , \odot
⊕,⊙满足第一个分配律。
第二分配律:如果对于
B
B
B的任何
b
b
b,
A
A
A的任何
a
1
,
a
2
a_1,a_2
a1,a2来说满足
(
a
1
⊕
a
2
)
⊙
b
=
(
a
1
⊙
b
)
⊕
(
a
2
⊙
b
)
(a_1\oplus a_2)\odot b=\left ( a_1\odot b \right ) \oplus \left ( a_2\odot b \right )
(a1⊕a2)⊙b=(a1⊙b)⊕(a2⊙b),则说运算
⊕
,
⊙
\oplus , \odot
⊕,⊙满足第二分配律。
满射:若是在一个集合
A
A
A到集合
A
ˉ
\bar{A}
Aˉ的映射
ϕ
\phi
ϕ下,
A
ˉ
\bar{A}
Aˉ的每一个元都至少是
A
A
A中某一个元的象,那么
ϕ
\phi
ϕ叫做一个
A
A
A到
A
ˉ
\bar{A}
Aˉ的满射。
单射:一个集合
A
A
A到集合
A
ˉ
\bar{A}
Aˉ的映射
ϕ
\phi
ϕ:
a
→
a
ˉ
a\to\bar{a}
a→aˉ叫做
A
A
A到
A
ˉ
\bar{A}
Aˉ的单射,假如
a
≠
b
⇒
a
ˉ
≠
b
ˉ
a \ne b\Rightarrow\bar{a}\ne\bar{b}
a=b⇒aˉ=bˉ。
一一映射:假如一个集合
A
A
A到集合
A
ˉ
\bar{A}
Aˉ的映射既满足满射又满足单射,那么映射叫做一一映射。
逆映射:若
f
f
f为双射,则对于任意的
y
∈
Y
y\in Y
y∈Y,存在唯一的
x
∈
X
x\in X
x∈X使得
f
(
x
)
=
y
f(x)=y
f(x)=y。因此就得到从
y
y
y到
x
x
x的映射,记作
f
−
1
f^{-1}
f−1,称为
f
f
f的逆映射。
注:逆映射是反函数概念的直接推广。
原像集合:设
B
∈
Y
B\in Y
B∈Y称
f
−
1
(
B
)
:
=
{
x
∈
X
:
f
(
x
)
∈
B
}
f^{-1}(B):=\left \{x\in X:f(x)\in B\right \}
f−1(B):={x∈X:f(x)∈B}为原像集合。
原像函数与反函数的区别:设
f
:
X
→
Y
f:X \to Y
f:X→Y为映射,
A
⊂
X
A\subset X
A⊂X,
B
⊂
Y
B\subset Y
B⊂Y。则有
A
⊂
f
−
1
(
f
(
A
)
)
A\subset f^{-1}(f(A))
A⊂f−1(f(A));
f
(
f
−
1
(
B
)
)
⊂
B
f(f^{-1}(B))\subset B
f(f−1(B))⊂B。
注:最直观的感受为原像集合比反函数映射到的集合大
在一个
A
A
A与
A
ˉ
\bar{A}
Aˉ间的一一映射之下,
A
ˉ
\bar{A}
Aˉ的每一个元都是而且只是
A
A
A里面一个元的象。
变换:一个
A
A
A到
A
A
A的映射叫做
A
A
A的一个变换。
同态:一个
A
A
A到
A
ˉ
\bar{A}
Aˉ的映射
ϕ
\phi
ϕ,叫做一个对于代数运算
∘
\circ
∘和
∘
ˉ
\bar{\circ }
∘ˉ来说的,
A
A
A到
A
ˉ
\bar{A}
Aˉ的同态映射,假如,在
ϕ
\phi
ϕ之下,不管
a
a
a和
b
b
b是
A
A
A的哪两个元,只要:
a
→
a
ˉ
,
b
→
b
ˉ
a\to \bar{a},b\to \bar{b}
a→aˉ,b→bˉ就有
a
∘
b
→
a
ˉ
∘
ˉ
b
ˉ
a\circ b\to \bar{a} \bar{\circ}\bar{b}
a∘b→aˉ∘ˉbˉ。
同态满射:假如对于代数运算
∘
\circ
∘和
∘
ˉ
\bar{\circ }
∘ˉ来说,有一个
A
A
A到
A
ˉ
\bar{A}
Aˉ的满射的同态映射存在,我们就说,这个映射是一个同态满射。对于代数运算
∘
\circ
∘和
∘
ˉ
\bar{\circ }
∘ˉ来说,
A
A
A与
A
ˉ
\bar{A}
Aˉ同态。
定理:对于代数运算
∘
\circ
∘和
∘
ˉ
\bar{\circ }
∘ˉ来说,
A
A
A与
A
ˉ
\bar{A}
Aˉ同态,那么(i)若
∘
\circ
∘适合结合律,
∘
ˉ
\bar{\circ }
∘ˉ也适合结合律。(ii)若
∘
\circ
∘适合交换律,
∘
ˉ
\bar{\circ }
∘ˉ也适合交换律。
同构映射:一个
A
A
A与
A
ˉ
\bar{A}
Aˉ间的一一映射
ϕ
\phi
ϕ是一个对于代数运算
∘
\circ
∘和
∘
ˉ
\bar{\circ }
∘ˉ来说的,
A
A
A与
A
ˉ
\bar{A}
Aˉ间的同构映射(简称同构),假如在
ϕ
\phi
ϕ之下,不管
a
a
a和
b
b
b是
A
A
A的哪两个元,只要:
a
→
a
ˉ
,
b
→
b
ˉ
a\to \bar{a},b\to \bar{b}
a→aˉ,b→bˉ就有
a
∘
b
→
a
ˉ
∘
ˉ
b
ˉ
a\circ b\to \bar{a} \bar{\circ}\bar{b}
a∘b→aˉ∘ˉbˉ。记为
A
≅
A
ˉ
A\cong\bar{A}
A≅Aˉ。
自同构:对于
∘
\circ
∘和
∘
\circ
∘来说的一个
A
A
A与
A
A
A之间的同构映射叫做一个对于
∘
\circ
∘来说的
A
A
A的自同构。
这一章节将介绍群论,希望坚持更新,加油!