矩形覆盖
题目描述
我们可以用21的小矩形横着或者竖着去覆盖更大的矩形。请问用n个21的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?
题目解析
由题目可知 矩形的形式有两种,21和12可以理解为高度为1和高度为2的矩形,
最后需要使用这个两种矩形叠成2n的矩形,首先我们知道n等于1的时候只有一种方式(21),n等于2的时候有两种方式两个高度为1的叠加,以及两个高度为2的横向扩展,n等于3的时候我们我们可能有两种方式直接到达,从n等于2的位置使用高度为1的叠加或者从n等于1的位置使用两个高度为2的扩展,同理当高度等于n时,可能有两种方式堆达,第一种从n-1的位置使用高度为1的矩形堆达,第二种从n-2的位置使用高度为2的矩形堆达,所以我们只需要探究到达f(n-1)的方式以及f(n-2)的方式,即f(n)=f(n-1)+f(n-2);
代码
public class Solution {
public int RectCover(int target) {
if(target < 1){
return 0;
}
if(target <= 2){
return target;
}else{
return RectCover(target-1)+ RectCover(target-2);
}
}
}