矩形覆盖

矩形覆盖

题目描述

我们可以用21的小矩形横着或者竖着去覆盖更大的矩形。请问用n个21的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?

题目解析

由题目可知 矩形的形式有两种,21和12可以理解为高度为1和高度为2的矩形,
最后需要使用这个两种矩形叠成2n的矩形,首先我们知道n等于1的时候只有一种方式(21),n等于2的时候有两种方式两个高度为1的叠加,以及两个高度为2的横向扩展,n等于3的时候我们我们可能有两种方式直接到达,从n等于2的位置使用高度为1的叠加或者从n等于1的位置使用两个高度为2的扩展,同理当高度等于n时,可能有两种方式堆达,第一种从n-1的位置使用高度为1的矩形堆达,第二种从n-2的位置使用高度为2的矩形堆达,所以我们只需要探究到达f(n-1)的方式以及f(n-2)的方式,即f(n)=f(n-1)+f(n-2);

代码

public class Solution {
    public int RectCover(int target) {
        if(target < 1){
            return 0;
        } 
        if(target <= 2){
            return target;
        }else{
            return RectCover(target-1)+ RectCover(target-2);
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值