- 博客(4)
- 收藏
- 关注
原创 【论文阅读】Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression
主要内容文章提出两个Loss :Distance-IoU(DIoU) Loss和Complete IoU(CIoU) Loss用于目标检测的Bbox回归,并与IoU Loss和GIoU Loss做了对比,比这两个收敛得更快、更准。此外,DIoU很容易用在NMS中。Loss先简单回顾一下IoU Loss和GIoU Loss,再说明文章提出的DIoU Loss和CIoU LossIoU先说说...
2019-11-22 11:00:35 4614
原创 Bottom-up Object Detection by Grouping Extreme and Center Points
介绍检测目标的四个极值点和一个中心点,然后通过几何关系进行暴力匹配,将四个极值点分组,开销为O(n4)。该方法相较于CornerNet的优点:1、CornerNet检测左上和右下角点,该两个角点一般在物体之外,没有外观特征不容易检测,极值点检测落在物体上有强烈的外观特征。2、关键点分组采用几何分组,完全基于外观。注意数据集标注了极值点 Edge aggregation:极值点进行聚合响应 对...
2019-08-27 18:04:29 163
原创 CornerNet论文记录
Abstract使用一对关键点来预测检测框,该对关键点为左上角点和右下角点,不使用anchor,另外文章还提出corner pooling。Introduction作者认为使用 anchor box有两个缺点:1.正负样本不均衡,密集采样anchor box,但只有少部分的anchor box中有ground truth。2.引入许多超参数,如个数,大小,长宽比。使用一个ConvNet预测...
2019-08-26 15:09:32 150
原创 【论文阅读笔记】MOTS: Multi-Object Tracking and Segmentation
MOTS: Multi-Object Tracking and SegmentationAbstractIntroductionRelated WorkDatasets半自动标注程序Evaluation MeasuresMethodExperimentsAbstract文章将多目标跟踪任务扩展到多目标跟踪与分割。为此使用半自动标注程序在两个现有的跟踪数据集上创建了密集的像素级的标注。新标注包含...
2019-07-30 15:10:10 2884
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人