目录
前言
在我们的日常生活中,滤波器在众多领域中都扮演着重要的角色。它们在音频处理、图像处理、信号预处理以及预测等多个领域中具有广泛的应用。滤波器可以帮助我们去除不需要的信息,强调我们想要的信息,从而达到我们想要的目的。
其中,自适应滤波器是一种在使用过程中可以自动调整其参数以达到最优表现的滤波器。在此文章中,我将以Python语言为工具,分享一系列高效的自适应滤波器的实现。
我们将从时域自适应滤波器开始,逐渐深入到频域自适应滤波器,并在最后探讨一些特殊的非线性自适应滤波器。让我们开始吧!
一、时域自适应滤波器
时域滤波器是在时间序列上进行操作的滤波器,其主要的实现方式包括最小均方滤波器(LMS)、块最小均方滤波器(BLMS)、归一化最小均方滤波器(NLMS)、块归一化最小均方滤波器(BNLMS)、