利用人工神经网络在Abaqus中实现本构模型的网格粗化计算框架:详细指南与实践

293 篇文章 548 订阅 ¥19.90 ¥99.00
本文详述如何在Abaqus中使用人工神经网络(ANN)实现本构模型的网格粗化计算,通过数据生成器和ANN训练模块,结合UMAT创建自定义材料模型,提升计算效率和精度。
摘要由CSDN通过智能技术生成

引言

亲爱的读者朋友们,大家好,我在此篇文章中,将为大家详细介绍如何在Abaqus中实现基于人工神经网络(Artificial Neural Network, ANN)的本构模型以进行网格粗化的计算框架。我们将一步步地学习和探索这个过程,并通过两个核心模块——数据生成器和ANN训练模块,实现这一计算框架。

完整项目下载

我写这篇文章的目的主要有两个:一是为了提供一个比较详尽的教程,帮助想要实现这一框架的读者理解其工作原理和操作方法;二是为了分享我在这个领域的一些心得和体会,希望能给读者带来一些启示。我在此对大家表示最诚挚的感谢,并希望大家能从这篇文章中收获一些有价值的信息。

基本概念和理论

在我们开始详细讲解这个过程之前,让我们先了解一下一些基本的概念和理论。我相信这会帮助大家更好地理解我们的计算框架。

Abaqus中的网格粗化

在Abaqus中,网格粗化是一种处理大规模模型问题的重要技术。通过将模型中的一些部分用较少的、更大的元素来代替,可以大大减少计算所需的时间和存储空间。然而,网格粗化的过程往往会引入一些误差,因为粗网格无法完全捕捉细网格中的一些细节。因此ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

快撑死的鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值