(九万字)面向2025年BOSS直聘人工智能算法工程师高频面试题解析

面向2025年BOSS直聘人工智能算法工程师高频面试题解析

1. 机器学习(ML)

理论解析

机器学习是让计算机从数据中学习规律的一套方法论,包含监督学习无监督学习强化学习等范式。在监督学习中,给定带标签的数据,算法尝试学习从输入到输出的映射关系;无监督学习则在缺乏标签的情况下挖掘数据内在结构;强化学习则让智能体通过与环境交互、依据奖赏反馈来改进策略 (Q-learning - Wikipedia)。机器学习模型的性能通常取决于其对训练数据的拟合程度和对新数据的泛化能力。这涉及到偏差-方差权衡:简单模型(低复杂度)可能有较高的偏差(对训练数据拟合不充分,欠拟合),而复杂模型(高自由度)可能有较高的方差(对训练数据过度拟合,导致泛化差) (

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

快撑死的鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值