面向2025年BOSS直聘人工智能算法工程师高频面试题解析
1. 机器学习(ML)
理论解析
机器学习是让计算机从数据中学习规律的一套方法论,包含监督学习、无监督学习 和 强化学习等范式。在监督学习中,给定带标签的数据,算法尝试学习从输入到输出的映射关系;无监督学习则在缺乏标签的情况下挖掘数据内在结构;强化学习则让智能体通过与环境交互、依据奖赏反馈来改进策略 (Q-learning - Wikipedia)。机器学习模型的性能通常取决于其对训练数据的拟合程度和对新数据的泛化能力。这涉及到偏差-方差权衡:简单模型(低复杂度)可能有较高的偏差(对训练数据拟合不充分,欠拟合),而复杂模型(高自由度)可能有较高的方差(对训练数据过度拟合,导致泛化差) (