解释双曲空间(Hyperbolic Space)在深度学习中的应用(面试题200合集,中频、实用)

在深度学习领域,我们通常默认数据存在于欧氏空间(Euclidean Space)中,并在此基础上设计神经网络架构和优化算法。然而,许多现实世界中的数据,尤其是具有潜在层次结构(hierarchical structure)或幂律分布(power-law distribution)的数据,用欧氏空间来表示可能并非最优。近年来, 双曲空间(Hyperbolic Space) 作为一种非欧几何空间,因其独特的几何特性,在表示这类数据方面展现出巨大潜力,并逐渐成为深度学习研究的一个热门方向。

一、什么是双曲空间?

双曲空间是一种具有恒定负曲率 (constant negative curvature) 的几何空间。与之相对的是:

  • 欧氏空间:曲率为0,是我们最熟悉的“平直”空间。
  • 球面空间 (Spherical Space):具有恒定正曲率,例如地球表面。

理解双曲空间的关键特性:

  1. 负曲率的直观理解

    • 在二维双曲平面上,三角形的内角和小于180度࿰
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

快撑死的鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值