在深度学习领域,我们通常默认数据存在于欧氏空间(Euclidean Space)中,并在此基础上设计神经网络架构和优化算法。然而,许多现实世界中的数据,尤其是具有潜在层次结构(hierarchical structure)或幂律分布(power-law distribution)的数据,用欧氏空间来表示可能并非最优。近年来, 双曲空间(Hyperbolic Space) 作为一种非欧几何空间,因其独特的几何特性,在表示这类数据方面展现出巨大潜力,并逐渐成为深度学习研究的一个热门方向。
一、什么是双曲空间?
双曲空间是一种具有恒定负曲率 (constant negative curvature) 的几何空间。与之相对的是:
- 欧氏空间:曲率为0,是我们最熟悉的“平直”空间。
- 球面空间 (Spherical Space):具有恒定正曲率,例如地球表面。
理解双曲空间的关键特性:
-
负曲率的直观理解:
- 在二维双曲平面上,三角形的内角和小于180度