自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(33)
  • 收藏
  • 关注

原创 在goland中创建项目要注意的点

1.新建一个项目有项目名下面包括(bin pkg src)src主要用来放代码2.进入终端进入src目录 进行 go mod init src 在 src目录中生成go.mod3.设置 go build configuration ,选择当前src目录,run kind :DirectoryDirectory:当前项目的src层working directory:也是当前目录的src层4.下载第三方包 go get xxxxx...

2021-11-10 01:51:05 510

原创 go连接MySQL数据库时出现的情况

1.panic: sql: unknown driver "mysql" (forgotten import?) 解决办法import(“database/sql”// 引入数据库驱动注册及初始化_ “github.com/go-sql-driver/mysql” )添加_ “gith...

2021-11-10 00:57:40 949

原创 pandas处理列中的数据,去除美元符号

今天开始数据挖掘短租房屋的建模过程,其中有一个excel数据表中的价格为字符串类型,需要转化为数值才能进行后续的数据挖掘。在网上寻找了很久的解答过程,终于解决了如下的问题。inputcalender = '../SrcData/calendar_detail.csv'outputcalender = '../NewData/calendar_detail.xlsx'data = p...

2020-03-19 00:42:34 5025

原创 Scrapy 抓取 当当图书2018畅销榜的所有图书

学习了Scrapy来爬取数据,来实践来爬取当当图书的畅销榜的图书。1.创建工程# 创建工程scrapy startporject dangdang# 创建爬虫cd dangdang 进入dangdang这个工程里面# 创建dangdang_book的爬虫, 开始的网址为dangdang.comscrapy genspider dangdang_book "dangd...

2020-03-09 20:19:34 603

原创 Scrapy (一)爬虫基本操作

Scrapy笔记1.创建爬虫##命令方式1.创建项目: scrapy startporject [爬虫名字]2.创建爬虫: 进入到项目所在的路径,执行命令: scrapy genspider [爬虫名字][爬虫的域名]注意:爬虫名字不能和项目名称一致...

2020-03-08 17:10:35 249

原创 数据分析之航空公司客户价值分析

航空公司客户价值分析1.挖掘背景与目标开启了第一个数据分析的项目,针对于航空公司价值的分析。客户关系管理的关键问题是客户分类,通过客户分类,区别无价值客户,高价值客户,企业针对不同价值的客户制定优化的个性化服务方案,采取不同的营销策略,将有限营销资源集中于高价值客户,实现企业利润最大化目标。1)借助航空公司客户数据,对客户分类。2)对不同的客户类别进行特征分析,比较不同客户的...

2020-03-06 20:24:04 5329

原创 Python数据分析三大框架之matplotlib(八)subplot绘制多个子图

使用subplot绘制多个子图import matplotlib.pyplot as pltimport numpy as np# 创建一个figureplt.figure()# 设置为2 * 2 的图 1 为(1,1)的子图plt.subplot(2, 2, 1)a = np.arange(512)b = a**2plt.plot(a, b)plt.xticks([-...

2020-03-02 13:02:20 509

原创 Python数据分析三大框架之matplotlib(七)scatter散点图绘制

scatter散点图绘制import matplotlib.pyplot as pltimport numpy as npn = 512X = np.random.uniform(-1.5, 1.5, n) # 服从(-1.5, 1.5)的正态分布Y = np.random.uniform(-1.5, 1.5, n) # 服从(-1.5, 1.5)的正态分布T = np.arct...

2020-03-02 12:51:10 177

原创 Python数据分析三大框架之matplotlib(六)axis, ticks坐标轴设置

axis,ticks为图像的坐标的设置,有以下为其中几种设置的方法。import matplotlib.pyplot as pltimport numpy as npx = np.linspace(-3, 3, 50)y1 = 2*x + 1y2 = x**2plt.figure()plt.plot(x, y2)plt.plot(x, y1, color='red', li...

2020-03-02 12:41:02 2233 2

原创 Python数据分析三大框架之matplotlib(五)figure

Figure相当于一个session,也就是说在这个Figure下这张图片可以进行很多图像的绘制。import matplotlib.pyplot as pltimport numpy as npx = np.linspace(-3, 3, 50)y1 = 2*x + 1y2 = x**2# 一个figure下面可以画出一个或多个图,相当于sessionplt.figure(...

2020-03-02 12:34:21 178

原创 Python数据分析三大框架之matplotlib(四)等高线图绘制

等高线图绘制import matplotlib.pyplot as pltimport numpy as npdef f(x, y): #The height function return (1 - x/2 + x**5 + y**3) * np.exp(-x**2-y**2)n = 256x = np.linspace(-3, 3, n)y = np.lin...

2020-03-02 12:30:28 408

原创 Python数据分析三大框架之matplotlib(三)3D图像绘制

3D图像的绘制import matplotlib.pyplot as pltimport numpy as npfrom mpl_toolkits.mplot3d import Axes3Dfig = plt.figure()ax = Axes3D(fig)# X, Y valueX = np.arange(-4, 4, 0.25)Y = np.arange(-4, 4, ...

2020-03-02 12:29:19 226

原创 Python数据分析三大框架之matplotlib(二)条形图的绘制

条形图的绘制import matplotlib.pyplot as pltimport numpy as npn = 12X = np.arange(n)Y1 = (1-X/float(n))*np.random.uniform(0.5, 1.0, n)Y2 = (1-X/float(n))*np.random.uniform(0.5, 1.0, n)#条形图的绘制plt...

2020-03-02 12:25:52 180

原创 Python数据分析三大框架之matplotlib(一)基本画图过程

前段时间学习了如何使用matplotlib绘制基本的数据图像import matplotlib.pyplot as pltimport numpy as npx = np.linspace(-1, 1, 100)#y = 2*x + 1y = x**2 + 1plt.plot(x, y)plt.show()使用plt.plot(x, y)绘制图像然后plt.show()...

2020-03-02 12:21:11 259

原创 Python数据分析三大框架之pandas(五)值的设置

值的设置import pandas as pdimport numpy as npdates = pd.date_range('20130101', periods= 6)df = pd.DataFrame(np.arange(24).reshape(6, 4), index = dates, columns = ['A', 'B', 'C', '...

2020-03-01 22:21:44 140

原创 Python数据分析三大框架之pandas(四)concat合并

concat合并import numpy as npimport pandas as pd# concatenatingdf1 = pd.DataFrame(np.ones((3, 4))*0, columns= ['a', 'b', 'c', 'd'])df2 = pd.DataFrame(np.ones((3, 4))*1, columns= ['a', 'b', 'c'...

2020-03-01 22:19:48 184

原创 Python数据分析三大框架之pandas(三)merge合并

合并部分 基础的部分 import numpy as npimport pandas as pd# merging two df by key/keys. (may be used in database)# simple exampleleft = pd.DataFrame({'key':['K0', 'K1', 'K2', 'K3'], ...

2020-03-01 22:16:20 324

原创 Python数据分析三大框架之pandas(二)打印输出,标签选择

打印输出import pandas as pdimport numpy as npdates = pd.date_range('20160101', periods= 6) # 时间序列df = pd.DataFrame(np.arange(24).reshape(6, 4), index = dates, columns = ['A', '...

2020-03-01 22:07:33 738

原创 Python数据分析三大框架之 pandas (一)基本数据形式

开始学习了pandas的基本操作与基本数据形式。 基本的序列 import pandas as pdimport numpy as np# 基本的序列s = pd.Series([1, 3, 6, np.nan, 44, 1], index=[1, 2, 3 ,4, 5, 6])print(s)#result1 1.02 3.03 6...

2020-03-01 21:57:49 406

原创 Python数据分析三大框架之numpy (五)合并

numpy数组的合并 按行合并 import numpy as npA = np.array([1, 1, 1])B = np.array([2, 2, 2])print(np.vstack((A, B)))# 按行合并C = np.vstack((A, B))print(A.shape, B.shape, C.shape)#result[[1 1 1]...

2020-03-01 21:31:26 112

原创 Python数据分析三大框架之 numpy (四)最大值,平均值

在这里学习了数组的平均值,最大值,累加值。 最大值,最小值的索引 import numpy as npA = np.arange(2, 14).reshape(3, 4)# 最小值的索引print(np.argmin(A))# 最大值的索引print(np.argmax(A)) 求平均值的方法 # 平均值的三种方法print(np.mea...

2020-03-01 21:23:02 864

原创 Python数据分析三大框架之 numpy (三)计算

学习了numpy里面的数组计算 数组减法 import numpy as npa = np.array([10, 20, 30, 40])b = np.arange(4) # [0, 1, 2, 3]# 减法result1 = a - bprint(a, b)result1 = a - b # [10-0, 20-1, 30-2, 40-3]print(res...

2020-03-01 20:59:17 202

原创 Python数据分析三大框架之numpy (二)分割

前段时间学习了分割数组的几种方法 按列分割 axis = 1 import numpy as npA = np.arange(12).reshape((3, 4))print(A)# 按列分割成两块 按列分割 axis = 1print(np.split(A, 2, axis= 1))# 按行分割成三块print(np.vsplit(A, 3))#re...

2020-03-01 20:36:58 322

原创 Python数据分析三大框架之 numpy (一)数组

学习数据分析的三大入门框架之一的numpy,整理以下学习的知识点。数组部分 数组类型 # array's data type (int float double ....) 数组类型a = np.array([2,23,4],dtype = np.float)print(a)# print array data typeprint(a.dtype)...

2020-03-01 20:21:28 268

原创 逻辑回归Logistc算法

(1)Logistic函数Logisti回归模型中的因变量只有1-0 。假设在p个独立自变量的作用下,记y取1的概率是,取0概率是1-p。优势比(oods)为。对oods取自然对数即得Logistic变换Logit(p)= 经过形式变化得到下面的形式:则L...

2020-02-29 16:57:09 362

原创 数据分析与挖掘(四)挖掘建模(1)分类与预测

经过数据探索与数据预处理,得到了可以直接建模的数据。。根据挖掘目标和数据形式可以以建立分类与预测,聚类分析,关联规则,时序分析和偏差检测。1.分类与预测分类和预测是预测问题的两种主要类型,分类主要是预测分类标号,而预测主要是建立连续值函数模型,预测给定自变量对于的因变量模型。 1.1实现过程 (1)分类分类是构造一个分类模型,输入样本的属性值,输出对应的类别,将美股样本映射到...

2020-02-29 15:37:53 1074

原创 数据分析与挖掘(三)数据预处理

今天把前几天学习的数据预处理,总结了以下:在数据挖掘中,巨量的原始数据存在着大量不完整的数据,严重影响数据挖掘建模的效率。甚至可能导致数据挖掘结果的偏差,所以进行数据清洗就显得尤为重要。数据预处理的主要内容包括:(1)数据清洗(2)数据集成(3)数据变换(4)数据规约1.数据清洗 1.1缺失值处理 处理缺失值的方法可分为3类:删除记录,数据插补和不处理。...

2020-02-29 14:58:37 1600

原创 MYSQL(二)数据过滤(WHERE AND OR IN NOT LIKE)

数据过滤

2020-02-24 22:31:30 535

原创 数据分析与挖掘(二)数据探索

这里是数据探索的总结 1.1数据质量分析 数据质量分析的首要任务就是检查原始数据中是否存在脏数据,一般是指不合规的数据。其中包括(缺失值,异常值,不一致的值) 1.1.1缺失值分析 (1)缺失值产生的原因:有些信息无法获取,或者信息的代价太大。(2)缺失值的影响:数据挖掘建模将丢失大量有用的信息,不确定性会显著增强,包含空值的数据会使建模过程更加混乱,导致不可靠的输出...

2020-02-24 21:22:59 557

原创 数据分析与挖掘(一)误差与精度

分类与预测算法的评价模型对数据进行训练,为了判断一个模型的性能。需要一组没有参与预测模型的数据集,并用该数据集上评价预测模型的准确率。模型的预测效果评价,通常用相对/绝对误差,平均绝对误差,均方误差,均方根误差。 绝对误差与相对误差 设为实际值,为预测值,则称为绝对误差,如下: 为相对误差(Relative...

2020-02-24 15:41:45 2016

原创 MYSQL(一)数据排序(ORDER BY 与 LIMIT )

这是复习MYSQL的第一天进行对字母顺序的排序select prod_name from productsorder by prod_name;选择prod_name 对 prod_name的字母顺序进行排序按多个列排序select prod_id, prod_price, prod_namefrom productsorder by prod_price, pr...

2020-02-23 21:59:48 1085

原创 精益数据分析(一)各种指标

请直面这样一个事实:你其实沉迷在妄想之中数据分析离不开对企业关键指标的跟踪。这些指标与你的商业模式(即营收来源,支出成本,客户数量以及客户获取策略的效果)有关,因此往往十分重要。什么是好的数据指标好的数据指标是比较性的。如果能够比较某个数据指标在不同的时间段,用户群体,竞争产品之间的表现,你可以更好的洞察产品的实际走向。好的数据指标是简单易懂的。如果人们不能很容易的记住某个指标,那...

2020-02-23 16:14:45 571

原创 (一)R语言图形初阶基本总结

这是我时隔两年的第二篇博客。好久不见甚是想念。1.图形参数非常重要的一个函数 par(optionname= value, optionname,...)。不加参数执行par()可以生成一个含有当前图形参数设置的列标。添加参数no.readonly=TRUE 可以生成一个可以修改的当前图形参数列表。示例:opar<-par(no.readonly=TRUE)par(lty...

2020-02-23 14:36:02 661

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除