剑指Offer-Java-矩形覆盖

题目

我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?

代码

可以将问题理解成
当1*2的格子的时候只有一种可能
当2*2的格子时候有两种可能
当3*2的时候取决于第一个怎么放,当第一次摆放一块 1*2 的小矩阵,则摆放方法总共为f(target - 1)当第一次摆放一块2*1的小矩阵,则摆放方法总共为f(target-2)。
因为当摆放的为2*1的时候,当摆放为1*2的时候其下面的也就确定了
这里写图片描述
由此通过迭代就可以求出所有可能性

public class Solution {
    public int RectCover(int target) {
        int a = 1;
        int b = 2;
        int c=0;
        if(target==1){
            return 1;
        }
        if(target==2){
            return 2;
        }
        for(int i=3;i<=target;i++){
             c = a+b;
             a=b;
             b=c;
        }
        return c;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值