题目
我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?
代码
可以将问题理解成
当1*2的格子的时候只有一种可能
当2*2的格子时候有两种可能
当3*2的时候取决于第一个怎么放,当第一次摆放一块 1*2 的小矩阵,则摆放方法总共为f(target - 1)当第一次摆放一块2*1的小矩阵,则摆放方法总共为f(target-2)。
因为当摆放的为2*1的时候,当摆放为1*2的时候其下面的也就确定了
由此通过迭代就可以求出所有可能性
public class Solution {
public int RectCover(int target) {
int a = 1;
int b = 2;
int c=0;
if(target==1){
return 1;
}
if(target==2){
return 2;
}
for(int i=3;i<=target;i++){
c = a+b;
a=b;
b=c;
}
return c;
}
}