一、Map/Reduce
package com.mrtest.hadoop;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
import java.util.Iterator;
import java.util.StringTokenizer;
/**
* 单词计数
* @author xuyao
*/
public class WordCount {
public static class WordCountMapper extends Mapper<Object, Text, Text, IntWritable> {
private static final IntWritable ONE = new IntWritable(1);
private Text word = new Text();
@Override
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
this.word.set(itr.nextToken());
context.write(this.word, ONE);
}
}
}
public static class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable();
@Override
public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
IntWritable val;
for (Iterator i = values.iterator(); i.hasNext(); sum += val.get()) {
val = (IntWritable) i.next();
}
this.result.set(sum);
context.write(key, this.result);
}
}
public static void main(String[] args) throws Exception {
System.setProperty("hadoop.home.dir", "D:\hadoop-common-2.7.3");
Configuration configuration = new Configuration();
Job job = Job.getInstance(configuration, "WordCount");
job.setJarByClass(WordCount.class);
//设置Map和Reduce类
job.setMapperClass(WordCountMapper.class);
job.setReducerClass(WordCountReducer.class);
//设置reduce输出类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
//设置map输出类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
String[] otherArgs = new String[]{"input/dream.txt", "output"};
Path path = new Path(otherArgs[1]);
FileSystem fileSystem = path.getFileSystem(configuration);
if (fileSystem.exists(path)) {
fileSystem.delete(path, true);
}
// 设置输入/输出数据存放位置
FileInputFormat.setInputPaths(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
boolean result = job.waitForCompletion(true);
System.exit(result ? 0 : 1);
}
}
二、结果
三,遇到的问题
报错语句1:
HADOOP_HOME or hadoop.home.dir are not set
解决方法:
1,下载winutils.exe包:https://github.com/SweetInk/hadoop-common-bin 。然后将其放到hadoop的包(意思就是说,windows中需要解压hadoop的安装包)的bin目录下。
2,在程序起始处添加语句:
System.setProperty("hadoop.home.dir", "D:\\hadoop-common-2.7.3");
3,在system32文件夹下添加hadoop.dll文件
报错语句2:
org.apache.hadoop.mapred.FileAlreadyExistsException
解决方法:
输出目录是运行时程序生成的,删除就行了
报错语句3:
java.lang.UnsatisfiedLinkError
解决方法:
原因是hadoop版本不一致,程序用的hadoop jar 包的版本是2.7.3,而我之前引入的hadoop.home的文件版本是2.2.0
重新下载hadoop包并配置hadoop_home 或者重新引入jar包即可
一定要注意细节!这个错误网上的说法五花八门,花了好久才找出来