验证尼科彻斯定理,即:任何一个整数的立方都可以写成一串连续奇数的和。××
*问题分析与算法设计
本题是一个定理,我们先来证明它是成立的。
对于任一正整数a,不论a是奇数还是偶数,整数(a×a-a+1)必然为奇数。
构造一个等差数列,数列的首项为(a×a-a+1),等差数列的差值为2(奇数数列),则前a项的和为:
a×((a×a-a+1))+2×a(a-1)/2
=a×a×a-a×a+a+a×a-a
=a×a×a
定理成立。证毕。
通过定理的证明过程可知L所要求的奇数数列的首项为(a×a-a+1),长度为a。编程的算法不需要特殊设计,可按照定理的证明过直接进行验证。
#include <stdio.h>
int main()
{
int a, b, c, d;
printf("Please enter a number:");
scanf("%d", &a);
b = a*a*a;
printf("%d*%d*%d = %d =", a, a, a, b);
for (d = 0, c = 0; c < a; c++)
{
d += a*a - a + 1 + c*2;
printf(c?" + %d" : "%d", a*a - a + 1 + c*2);
}
if(d == b)
{
printf(" Y\n");
}
else
{
printf(" N\n");
}
return 0;
}
1) Please enter a number:13
13*13*13=2197=157+159+161+163+165+167+169+171+173+175+177+179+181 Y
2) Please enter a number:14
14*14*14=2744=183+185+187+189+191+193+195+197+199+201+203+205+207+209 Y