尼科彻斯定理

验证尼科彻斯定理,即:任何一个整数的立方都可以写成一串连续奇数的和。××


*问题分析与算法设计
本题是一个定理,我们先来证明它是成立的。
对于任一正整数a,不论a是奇数还是偶数,整数(a×a-a+1)必然为奇数。
构造一个等差数列,数列的首项为(a×a-a+1),等差数列的差值为2(奇数数列),则前a项的和为:
a×((a×a-a+1))+2×a(a-1)/2
=a×a×a-a×a+a+a×a-a
=a×a×a
定理成立。证毕。
通过定理的证明过程可知L所要求的奇数数列的首项为(a×a-a+1),长度为a。编程的算法不需要特殊设计,可按照定理的证明过直接进行验证。

#include <stdio.h>

int main()
{
    int a, b, c, d;
    printf("Please enter a number:");
    scanf("%d", &a); 
    b = a*a*a; 
    printf("%d*%d*%d = %d =", a, a, a, b);
    for (d = 0, c = 0; c < a; c++) 
    {
        d += a*a - a + 1 + c*2; 
        printf(c?" + %d" : "%d", a*a - a + 1 + c*2);
    }
    if(d == b)
    {
        printf(" Y\n");
    } 
    else 
    {
        printf(" N\n");
    }

    return 0; 
}


1) Please enter a number:13
13*13*13=2197=157+159+161+163+165+167+169+171+173+175+177+179+181 Y
2) Please enter a number:14
14*14*14=2744=183+185+187+189+191+193+195+197+199+201+203+205+207+209 Y

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值