网络学习中参数量具体如何计算

本文详细介绍了如何计算深度学习网络中的参数量,包括卷积层、偏置、PReLU层等,通过实例计算了一个网络结构的参数总数为4016。在PyTorch中,可以直接获取模型的参数数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

from network import Net as net
    model = net(num_channels=1, scale_factor=4, d=32, s=5, m=1)
    print(model)
    #model = torch.load(pretrained_model, map_location = torch.device('cpu'))
    model.load_state_dict(torch.load(pretrained_model, map_location = torch.device('cpu'<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值