LSTM神经网络

LSTM因其在序列任务中的出色表现,如气体负荷预测和股票预测,成为优于RNN的选择。通过避免梯度消失问题,LSTM能处理长期依赖关系,其结构包含输入、遗忘和输出门,允许更精确地控制记忆。LSTM的单元状态和隐藏状态分别处理记忆和计算预测结果,而RNN只有一个隐藏状态。通过门控机制,LSTM可以决定何时存储或遗忘信息,这使得它在处理序列学习问题时更具优势。
摘要由CSDN通过智能技术生成

       LSTM被广泛用于许多序列任务(包括天然气负荷预测,股票市场预测,语言建模,机器翻译),并且比其他序列模型(例如RNN)表现更好,尤其是在有大量数据的情况下。 LSTM经过精心设计,可以避免RNN的梯度消失问题。消失梯度的主要实际限制是模型无法学习长期的依赖关系。但是,通过避免消失的梯度问题,与常规RNN相比,LSTM可以存储更多的记忆(数百个时间步长)。与仅维护单个隐藏状态的RNN相比,LSTM具有更多参数,可以更好地控制在特定时间步长保存哪些记忆以及丢弃哪些记忆。例如,在每个训练步骤中都必须更新隐藏状态,因此RNN无法确定要保存的记忆和要丢弃的记忆。

     

LSTM可以看作是一个更高级的RNN系列,主要由五个不同部分组成。

●单元状态:这是LSTM单元的内部单元状态(例如,记忆)。

●隐藏状态:这是用于计算预测结果的外部隐藏状态

●输入门:确定发送到单元状态的当前输入量

●忘记门:确定发送到当前单元状态的先前单元状态的数量

●输出门:确定隐藏状态下输出的单元状态数

可以将RNN加载到单元架构中,如下所示。该单元输出的状态取决于前一个单元的状态和当前输入(使用非线性激活函数)。但是,在RNN中,单元状态始终随每个输入而变化。这将不断更改RNN的单元状态。此行为对于保留长期依赖关系非常不利。 LSTM可以决定何时以单位状态替换,更新或忘记存储在每个神经元中的信息。这意味着LSTM具有防止单元状态改变的机制,从而保留了长期依赖关系。

采用引入门控机制来实现这种效果。对于单元需要执行的每个操作,LSTM都有一个相应的门。门在0和1之间连续(通常是S型函数)。 0表示没有信息通过门,1表示所有信息都通过门。 LSTM对单元中的每个神经元使用一个这样的门。如前所述,这些门控制以下内容:

●当前有多少输入被写入单元状态(输入门)

●先前单元状态(忘记门)遗忘的信息量

●从单元状态到最终隐藏状态(输出门)的信息输出量

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值