排序算法 | 平均时间复杂度 | 最好情况 | 最坏情况 | 空间复杂度 | 稳定性 |
---|---|---|---|---|---|
冒泡排序 | O ( n 2 ) O(n^2) O(n2) | O ( n ) O(n) O(n) | O ( n 2 ) O(n^2) O(n2) | O ( 1 ) O(1) O(1) | 稳定 |
插入排序 | O ( n 2 ) O(n^2) O(n2) | O ( n ) O(n) O(n) | O ( n 2 ) O(n^2) O(n2) | O ( 1 ) O(1) O(1) | 稳定 |
归并排序 | O ( n l o g n ) O(nlogn) O(nlogn) | O( n l o g n nlogn nlogn) | O( n l o g n nlogn nlogn) | O( n + l o g n n+logn n+logn) | 稳定 |
桶排序 | O ( n + k ) O(n+k) O(n+k) | O ( n + k ) O(n+k) O(n+k) | O ( n 2 ) O(n^2) O(n2) | O ( n + k ) O(n+k) O(n+k) | 稳定 |
计数排序 | O ( n + k ) O(n+k) O(n+k) | O ( n + k ) O(n+k) O(n+k) | O ( n + k ) O(n+k) O(n+k) | O ( k ) O(k) O(k) | 稳定 |
基数排序 | O ( n ∗ m ) O(n*m) O(n∗m) | O ( n ∗ m ) O(n*m) O(n∗m) | O ( n ∗ m ) O(n*m) O(n∗m) | O ( n + m ) O(n+m) O(n+m) | 稳定 |
选择排序 | O ( n 2 ) O(n^2) O(n2) | O ( n 2 ) O(n^2) O(n2) | O ( n 2 ) O(n^2) O(n2) | O ( 1 ) O(1) O(1) | 不稳定 |
希尔排序 | O ( n l o g n ) O(nlogn) O(nlogn) | O ( n l o g 2 n ) O(nlog^2 n) O(nlog2n) | O ( n 2 ) O(n^2) O(n2) | O ( 1 ) O(1) O(1) | 不稳定 |
快速排序 | O ( n l o g n ) O(nlogn) O(nlogn) | O ( n l o g n ) O(nlogn) O(nlogn) | O ( n 2 ) O(n^2) O(n2) | O ( l o g n ) O(logn) O(logn) | 不稳定 |
堆排序 | O ( n l o g n ) O(nlogn) O(nlogn) | O ( n l o g n ) O(nlogn) O(nlogn) | O ( n l o g n ) O(nlogn) O(nlogn) | O ( 1 ) O(1) O(1) | 不稳定 |
稳定:如果a原本在b前面,而a=b,排序之后a仍然在b的前面;
不稳定:如果a原本在b的前面,而a=b,排序之后a可能会出现在b的后面;
时间复杂度: 一个算法执行所耗费的时间。
空间复杂度:运行完一个程序所需内存的大小。
1、冒泡排序(Bubble Sort)
冒泡排序是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。
1.1 算法描述
1、比较相邻的元素。如果第一个比第二个大,就交换它们两个;
2、对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;
3、针对所有的元素重复以上的步骤,除了最后一个;
4、重复步骤1~3,直到排序完成。
例子
对于数组[64, 55, 82, 64, 90, 19, 28, 98, 46],一趟冒泡排序过程为:
64和55交换,[55 ,64, 82, 64, 90, 19, 28, 98, 46];
64小于82,不交换,[55, 64, 82, 64, 90, 19, 28, 98, 46];
82大于64,交换后得[55, 64, 64, 82, 90, 19, 28, 98, 46];
82小于90,不交换,[55, 64, 64, 82, 90, 19, 28, 98, 46];
19小于90,交换后得[55, 64, 82, 64, 19, 90, 28, 98, 46];
28小于90,交换[55, 64, 82, 64, 19, 28, 90, 98, 46];
90小于98,不交换,[55, 64, 82, 64, 19, 28, 90, 98, 46];
98大于,交换后得[55, 64, 82, 64, 19, 28, 90, 46, 98];
1.2 适用场景
冒泡排序思路简单,代码也简单,特别适合小数据的排序。但是,由于算法复杂度较高,在数据量大的时候不适合使用。
function bubbleSort(arr) {
var len = arr.length;
for ( var i = 0; i < len; i++) {
for ( var j = 0; j < len - 1 - i; j++) {
if (arr[j] > arr[j+1]) { //相邻元素两两对比
var temp = arr[j+1]; //元素交换
arr[j+1] = arr[j];
arr[j] = temp;
}
}
}
return arr;
}
2、插入排序
插入排序是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。
2.1 算法描述
1、把待排序的数组分成已排序和未排序两部分,初始的时候把第一个元素认为是已排好序的。
2、取出下一个元素,在已经排序的元素序列中从后向前扫描;
3、如果该元素(已排序)大于新元素,将该元素移到下一位置;
4、重复步骤3,直到找到已排序的元素小于或者等于新元素的位置;
5、将新元素插入到该位置后;
6、重复上述过程直到最后一个元素被插入有序子数组中。
2.2 适用场景
插入排序由于 O ( n 2 ) O( n^2) O(n2)的复杂度,在数组较大的时候不适用。但是,在数据比较少的时候,是一个不错的选择,一般做为快速排序的扩充。例如,在STL的sort算法和stdlib的qsort算法中,都将插入排序作为快速排序的补充,用于少量元素的排序。
function insertionSort(arr) {
var len = arr.length;
var preIndex, current;
for ( var i = 1; i < len; i++) {
preIndex = i - 1;
current = arr[i];
while (preIndex >= 0 && arr[preIndex] > current) {
arr[preIndex+1] = arr[preIndex];
preIndex--;
}
arr[preIndex+1] = current;
}
return arr;
}
3、归并排序
归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为2-路归并。
算法描述
两种方法
3.1 递归法(Top-down)
1、申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列
2、设定两个指针,最初位置分别为两个已经排序序列的起始位置
3、比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置
4、重复步骤3直到某一指针到达序列尾
5、将另一序列剩下的所有元素直接复制到合并序列尾
3.2 迭代法(Bottom-up)
原理如下(假设序列共有n个元素):
1、将序列每相邻两个数字进行归并操作,形成ceil(n/2)个序列,排序后每个序列包含两/一个元素
2、若此时序列数不是1个则将上述序列再次归并,形成ceil(n/4)个序列,每个序列包含四/三个元素
3、重复步骤2,直到所有元素排序完毕,即序列数为1
3.3 适用场景
归并排序在数据量比较大的时候也有较为出色的表现(效率上),但是,其空间复杂度O(n)使得在数据量特别大的时候(例如,1千万数据)几乎不可接受。而且,考虑到有的机器内存本身就比较小,因此,采用归并排序一定要注意。
function mergeSort(arr) { //采用自上而下的递归方法
var len = arr.length;
if (len < 2) {
return arr;
}
var middle = Math.floor(len / 2),
left = arr.slice(0, middle),
right = arr.slice(middle);
return merge(mergeSort(left), mergeSort(right));
}
function merge(left, right)
{
var result = [];
while (left.length>0 && right.length>0) {
if (left[0] <= right[0]) {
result.push(left.shift());
} else {
result.push(right.shift());
}
}
while (left.length)
result.push(left.shift());
while (right.length)
result.push(right.shift());
return result;
}