python实现均值变点法计算地形起伏度
利用统计学上的均值变点法提取实验区地势起伏度并分级分析,试图为提高区域地势起伏度研究的有效性和实用性提供参考。
温度植被干旱指数(TVDI)计算
温度植被干旱指数TVDI(Temperature Vegetation Dryness Index)是一种基于光学与热红外遥感通道数据进行植被覆盖区域表层土壤水分反演的方法。 作为同时与归一化植被指数(NDVI)和地表温度(LST)相关的温度植被干旱指数(TVDI)可用于干旱监测,尤其是监测特定年内某一时期整个区域的相对干旱程度,并可用于研究干旱程度的空间变化特征。
地理探测器——地理所王劲峰
空间分异是自然和社会经济过程的空间表现,也是自亚里士多德以来人类认识自然的重要途径。地理探测器是探测空间分异性,以及揭示其背后驱动因子的一种新的统计学方法,此方法无线性假设,具有优雅的形式和明确的物理含义。基本思想是:假设研究区分为若干子区域,如果子区域的方差之和小于区域总方差,则存在空间分异性;如果两变量的空间分布趋于一致,则两者存在统计关联性。地理探测器q统计量,可用以度量空间分异性、探测解释因子、分析变量之间交互关系,已经在自然和社会科学多领域应用。
GisedTrend插件
GisedTrend插件与PostgreSQL 1数据库管理系统和PostGIS 2模块紧密相连,这些模块为PostgreSQL添加了空间功能。 PostGIS允许管理地理对象(点,线,多边形等),并具有一组用于基于地理的分析的功能。 PostGIS符合用于SQL的OpenGIS 3简单功能规范,可确保数据以开放且完整记录的格式存储,从而确保数据的持久性。 这是GisedTrend插件和以前开发的GSTA软件应用程序之间的第一个重要区别,因为它们都不能够管理大地基准。 因此,某些地理操作(例如距离计算)始终会得出近似结果。 这解释了为什么以前的软件(例如GSTA(Gao,1996)或TRANS
python实现栅格数据批量归一化
图像归一化,就是(数值-min)/(max-min),把结果都划归到0-1范围,便于不同变量之间的比较,取消了不同数量差别。我们利用python的arcpy包对栅格数据批量归一化,而且再保证属性中没有最大值和最小值信息的情况下也能实现归一化计算。
中国边界数据.zip
中国各省市边界图,新疆各地级市边界图,新疆县级边界图
BP人工神经网络.zip
BP神经网络对数据处理的整个大致流程: 首先输入变量,然后数据通过函数的处理,调整每个输入变量的权值,得到输出值,输出值与目标值进行误差比对,未达到精
度要求则函数重新调整权值,直到输出值满足误差要求;
TOPSIS评价方法(python).zip
英文全称:Technique for order performance by similarity to ideal solution
正理想解:各指标属性达到最满意的解。
负理想解:各指标属性达到最不满意的解。
灰色关联分析(matlab).zip
灰色系统理论提出了对各子系统进行灰色关联度分析的概念,意图透过一定的方法,去寻求系统中各子系统(或因素)之间的数值关系。因此,灰色关联度分析对于一个系统发展变化态势提供了量化的度量,非常适合动态历程分析。
计算步骤
▪ 确实参考数列与比较数列
▪ 对参考数列与比较数列进行无量纲化处理
▪ 计算关联系数,求关联度
模糊聚类分析法(matlab).zip
运用matlab进行模糊聚类分析步骤如下:建立数据矩阵;数据标准化;建立模糊相似矩阵;改造相似关系为等价关系;确定分类数
模糊聚类分析法(python).zip
运用python代码进行模糊聚类步骤如下:建立数据矩阵;数据标准化;建立模糊相似矩阵;改造相似关系为等价关系;确定分类数
模糊模式识别(matlab).zip
模式识别属于判别一个对象属于哪个模式的问题,进行模式识别要求具备两个特征:一是事先已知若干标准模式库;二是有待识别对象,所谓模糊模式识别,是指在模式识别中,模式是模糊的,或说标准模式库中提供的模式是模糊的。
模糊综合评判方法(matlab).zip
首先确定被评价对象的因素(指标)集和评价(等级)集;再分别确定各个因素的权重及它们的隶属度向量,获得模糊评判矩阵;最后把模糊评判矩阵与因素的权向量进行模糊运算并进行归一化,得到模糊综合评价结果
模糊综合评判方法(python).zip
首先确定被评价对象的因素(指标)集和评价(等级)集;再分别确定各个因素的权重及它们的隶属度向量,获得模糊评判矩阵;最后把模糊评判矩阵与因素的权向量进行模糊运算并进行归一化,得到模糊综合评价结果
熵权法(matlab).zip
熵权法是一种客观赋权方法。在具体使用过程中,熵权法根据各指标的变异程度,利用信息熵计算出各指标的熵权,再通过熵权对各指标的权重进行修正,从而得出较为客观的指标权重。
熵权法(python).zip
熵权法是一种客观赋权方法。在具体使用过程中,熵权法根据各指标的变异程度,利用信息熵计算出各指标的熵权,再通过熵权对各指标的权重进行修正,从而得出较为客观的指标权重。
数据包络分析法(matlab).zip
数据包络分析(Data envelopment analysis,DEA)是运筹学和研究经济生产边界的一种方法。该方法一般被用来测量一些决策部门的生产效率。
投影寻踪法(matlab).zip
投影寻踪( projection pursuit,PP) 方法属于直接由样本数据驱动的探索性数据分析方法,是美国科学家 Kruscal 于 20 世纪 70 年代提出的,在高维性、非线性、非正态数据分析处理方面有独到之处,运用matlab编程,其计算步骤如下:( 1) 指标体系无量纲化; (2) 构造投影指标函数; (3)构造投影目标函数;( 4) 确定最佳投影方向;( 5) 确定投影值
物元分析法(matlab).zip
物元分析法由我国数学家蔡文在 20 世纪 80 年代提出. 应用物元法建立多指标评价模型,可以针对复杂问题建立形象化模型,定量化得出评价结果,从而较完整、准确地反映事物的综合水平。利用matlab编程,进行如下步骤计算:1、待判物元的确定;2、经典域、节域的确定;3、关联函数;4、综合关联度
层次分析法AHP_1.m
层次分析法是指将一个复杂的多目标决策问题作为一个系统,将目标分解为多个目标或准则,进而分解为多指标(或准则、约束)的若干层次,通过定性指标模糊量化方法算出层次单排序(权数)和总排序,以作为目标(多指标)、多方案优化决策的系统方法。
计算步骤:1.建立层次结构模型;2.构造判断(成对比较)矩阵;3.层次单排序及其一致性检验;4.层次总排序及其一致性检验
层次分析法(AHP).py
层次分析法是指将一个复杂的多目标决策问题作为一个系统,将目标分解为多个目标或准则,进而分解为多指标(或准则、约束)的若干层次,通过定性指标模糊量化方法算出层次单排序(权数)和总排序,以作为目标(多指标)、多方案优化决策的系统方法。
计算步骤:1.建立层次结构模型;2.构造判断(成对比较)矩阵;3.层次单排序及其一致性检验;4.层次总排序及其一致性检验