逻辑斯蒂回归
使用回归可以进行分类,,需要使用sigmod函数,将实数压缩到0-1之间的一个数,表示类别的概率,不像归一化函数会出现0或者1的数
逻辑回归就是线性回归进行sigmod函数处理,将预测结果变成0-1的数,变成了概率
一定记住用在线性相关的数据里,线性关系不大,不适合使用
当模型有参数求解的时候,就有损失函数,否则就没有,如KNN,决策树没有损失函数
损失函数表示与测试与是指预测值与真实值之间的差异程度,如果预测值与真实值越接近则损失函数应该越小
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB
import sklearn.datasets as dt
from sklearn.model_selection import train_test_split
feature = dt.load_breast_cancer()['data']
target = dt.load_breast_cancer()['target']
x_train,x_test,y_train,y_test=train_test_split(feature,target,train_size=0.8,random_state=2023)
knn = KNeighborsClassifier().fit(x_train,y_train)
print("knn训练",knn.score(x_test,y_test))
gs = GaussianNB().fit(x_train,y_train)
print('高斯模型',gs.score(x_test,y_test))
l = LogisticRegression().fit(x_train,y_train)
print('l',l.score(x_test,y_test))