逻辑斯蒂回归

逻辑斯蒂回归

使用回归可以进行分类,,需要使用sigmod函数,将实数压缩到0-1之间的一个数,表示类别的概率,不像归一化函数会出现0或者1的数
逻辑回归就是线性回归进行sigmod函数处理,将预测结果变成0-1的数,变成了概率
一定记住用在线性相关的数据里,线性关系不大,不适合使用
当模型有参数求解的时候,就有损失函数,否则就没有,如KNN,决策树没有损失函数
损失函数表示与测试与是指预测值与真实值之间的差异程度,如果预测值与真实值越接近则损失函数应该越小
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB
import sklearn.datasets as dt
from sklearn.model_selection import train_test_split
feature = dt.load_breast_cancer()['data']
target = dt.load_breast_cancer()['target']
x_train,x_test,y_train,y_test=train_test_split(feature,target,train_size=0.8,random_state=2023)
#log = LogisticRegression()# 比较重要的参数,超参数plentaly,用l1还是l2
knn = KNeighborsClassifier().fit(x_train,y_train)
print("knn训练",knn.score(x_test,y_test))
gs = GaussianNB().fit(x_train,y_train)
print('高斯模型',gs.score(x_test,y_test))
l = LogisticRegression().fit(x_train,y_train)
print('l',l.score(x_test,y_test))
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值