BIM的作者还提出了一种有针对性攻击变体,称为Iterative Least-Likely Class Method(ILLCM),其目标是生成一个对抗样本,该样本被错误地分类为特定的目标类 t t t。事实上,ILLCM将原始分类器选择的可能性最小的类为目标,即 t = arg min f ( x ) t = \arg \min f(x) t=argminf(x)。相应的迭代更新公式如下所示: x i + 1 ′ = Clip ϵ { x i ′ − α ⋅ sign ( ∇ x L ( x i ′ , t ) ) } for i = 0 to n , and x 0 ′ = x x_{i+1}^{\prime}=\operatorname{Clip}_{\epsilon}\left\{x_{i}^{\prime}-\alpha \cdot \operatorname{sign}\left(\nabla_{x} \mathcal{L}\left(x_{i}^{\prime}, t\right)\right)\right\} \text { for } i=0 \text { to } n, \text { and } x_{0}^{\prime}=x xi+1′=Clipϵ{xi′−α⋅sign(∇xL(xi′,t))} for i=0 to n, and x0′=x除了交叉熵损失中的预测类别从真实标签 y y y变为对抗目标 t ≠ y t \neq y t=y。无目标攻击BIM和FGSM攻击增加了原始分类器的训练损失,有目标攻击ILLCM减少了对抗训练对 ( x , t ) (x,t) (x,t)的分类损失,以误导模型对目标类 t t t的置信度。