pytorch中的detach()和detach_.()

1.用法介绍

torch.tensor.detach():从计算图中分类,并返回一个新的张量,并且这个新的张量的requires_grad的属性为False

  • 注意:detach()分离计算图中的张量old_tensor时,会产生新的张量new_tensor。如果没有对old_tensor进行赋值操作等修改,用backward()求梯度的时候,old_tensor的梯度是可以获得的。如果没有对old_tensor进行修改,old_tensor也会被修改,用backward()求梯度的时候,则会报错。

torch.tensor.detach_():张量tensor会被从计算图中分离出来,并把它设置成叶子张量,并且这个分离出来的张量的requires_grad的属性为False

  • 注意:detach_()其实相当于将变量的依赖关系给剪断。已知有以下的依赖关系: x → y → z → w → h x \rightarrow y \rightarrow z \rightarrow w \rightarrow h xyzwh当对变量 z z z进行detach_()操作时,依赖关系会变为以下两部分 x → y , z → w → h x\rightarrow y, \quad z\rightarrow w\rightarrow h xy,zwh此时变量 z z z的为第二个依赖关系的叶子节点,并且 z z zrequires_grad的属性为False
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

道2024

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值