1.用法介绍
torch.tensor.detach():从计算图中分类,并返回一个新的张量,并且这个新的张量的requires_grad的属性为False。
- 注意:detach()分离计算图中的张量old_tensor时,会产生新的张量new_tensor。如果没有对old_tensor进行赋值操作等修改,用backward()求梯度的时候,old_tensor的梯度是可以获得的。如果没有对old_tensor进行修改,old_tensor也会被修改,用backward()求梯度的时候,则会报错。
torch.tensor.detach_():张量tensor会被从计算图中分离出来,并把它设置成叶子张量,并且这个分离出来的张量的requires_grad的属性为False。
- 注意:detach_()其实相当于将变量的依赖关系给剪断。已知有以下的依赖关系: x → y → z → w → h x \rightarrow y \rightarrow z \rightarrow w \rightarrow h x→y→z→w→h当对变量 z z z进行detach_()操作时,依赖关系会变为以下两部分 x → y , z → w → h x\rightarrow y, \quad z\rightarrow w\rightarrow h x→y,z→w→h此时变量 z z z的为第二个依赖关系的叶子节点,并且 z z z的requires_grad的属性为False。