pytorch数据类型介绍

用法介绍

pytorch的数据类型比较繁杂,有tensor内的数据类型,tensorCPU中的数据类型以及tensorGPU中的数据类型,它们之间的对应关系如下表格所示

Data typetypeCPU tensorGPU tensor
64-bit floating pointtorch.float64 /torch.doubletorch.DoubleTensortorch.cuda.DoubleTensor
32-bit floating pointtorch.float16 /torch.halftorch.HalfTensortorch.cuda.HalfTensor
8-bit integer (unsigned)torch.uint8torch.ByteTensortorch.cuda.ByteTensor
8-bit integer (signed)torch.int8torch.CharTensortorch.cuda.CharTensor
16-bit integer (signed)torch.int16/torch.shorttorch.ShortTensortorch.cuda.ShortTensor
32-bit integer (signed)torch.int32/torch.inttorch.IntTensortorch.cuda.IntTensor
64-bit integer (signed)torch.int64/torch.longtorch.LongTensortorch.cuda.LongTensor
Booleantorch.booltorch.BoolTensortorch.cuda.BoolTensor

pytorch中对应的数据类型转换函数有tensor1.type_as(tensor2),tensor.type(torch.IntTensor),tensor.long(),tensor.char(),tensor.int(),tensor.byte(),tensor.double(),tenosr.to(torch.long)

代码实例

pytorch的数据类型定义以及对应的数据类型转换的程序如下所示

>>> import torch
>>> torch.zeros((2, 4), dtype=torch.int32)
tensor([[0, 0, 0, 0],
        [0, 0, 0, 0]], dtype=torch.int32)
>>> torch.zeros((2, 4), dtype=torch.float32)
tensor([[0., 0., 0., 0.],
        [0., 0., 0., 0.]])
>>> torch.zeros((2, 4), dtype=torch.uint8)
tensor([[0, 0, 0, 0],
        [0, 0, 0, 0]], dtype=torch.uint8)
>>> torch.zeros((2, 4), dtype=torch.float64)
tensor([[0., 0., 0., 0.],
        [0., 0., 0., 0.]], dtype=torch.float64)
>>> A = torch.zeros((2, 4), dtype=torch.int32)
>>> type(A)
<class 'torch.Tensor'>
>>> B = torch.zeros((2, 4), dtype=torch.float32).type_as(A)
>>> print(B)
tensor([[0, 0, 0, 0],
        [0, 0, 0, 0]], dtype=torch.int32)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

道2024

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值