随机变量乘积的期望和方差

数学证明

随机变量乘积的期望: 已知两个随机变量 x 1 x_1 x1 x 2 x_2 x2为相互独立, 则 x 1 ⋅ x 2 x_1\cdot x_2 x1x2的期望为 E ( x 1 ⋅ x 2 ) = E ( x 1 ) ⋅ E ( x 2 ) \mathbb{E}(x_1\cdot x_2)=\mathbb{E}(x_1)\cdot \mathbb{E}(x_2) E(x1x2)=E(x1)E(x2)

证明:随机变量 x 1 ⋅ x 2 x_1\cdot x_2 x1x2的期望为 E ( x 1 ⋅ x 2 ) = E ( x 1 ) ⋅ E ( x 2 ) + C o v ( x 1 , x 2 ) \mathbb{E}(x_1\cdot x_2)=\mathbb{E}(x_1)\cdot\mathbb{E}(x_2)+\mathrm{Cov}(x_1,x_2) E(x1x2)=E(x1)E(x2)+Cov(x1,x2)因为随机变量 x 1 x_1 x1 x 2 x_2 x2相互独立,则 C o v ( x 1 , x 2 ) = 0 \mathrm{Cov}(x_1,x_2)=0 Cov(x1,x2)=0进而可知 E ( x 1 ⋅ x 2 ) = E ( x 1 ) ⋅ E ( x 2 ) + 0 = E ( x 1 ) ⋅ E ( x 2 ) \mathbb{E}(x_1\cdot x_2)=\mathbb{E}(x_1)\cdot\mathbb{E}(x_2)+0=\mathbb{E}(x_1)\cdot\mathbb{E}(x_2) E(x1x2)=E(x1)E(x2)+0=E(x1)E(x2)证毕。

随机变量乘积的方差: 已知两个随机变量 x 1 x_1 x1 x 2 x_2 x2为相互独立, 则 x 1 ⋅ x 2 x_1\cdot x_2 x1x2的方差为 V a r ( x 1 ⋅ x 2 ) = V a r ( x 1 ) ⋅ V a r ( x 2 ) + V a r ( x 1 ) ⋅ E ( x 2 ) 2 + V a r ( x 2 ) ⋅ E ( x 1 ) 2 \mathrm{Var}(x_1\cdot x_2)=\mathrm{Var}(x_1)\cdot\mathrm{Var}(x_2)+\mathrm{Var}(x_1)\cdot \mathbb{E}(x_2)^2+\mathrm{Var}(x_2)\cdot \mathbb{E}(x_1)^2 Var(x1x2)=Var(x1)Var(x2)+Var(x1)E(x2)2+Var(x2)E(x1)2

证明:已知随机变量 x 1 x_1 x1 x 2 x_2 x2相互独立,则随机变量 x 1 ⋅ x 2 x_1\cdot x_2 x1x2的方差为 V a r ( x 1 ⋅ x 2 ) = E ( ( x 1 ⋅ x 2 − E ( x 1 ⋅ x 2 ) ) 2 ) = E ( x 1 2 ⋅ x 2 2 ) − E ( x 1 ⋅ x 2 ) 2 = E ( x 1 2 ) ⋅ E ( x 2 2 ) − E ( x 1 ) 2 ⋅ E ( x 2 ) 2 = ( V a r ( x 1 ) + E ( x 1 ) 2 ) ⋅ ( V a r ( x 2 ) + E ( x 2 ) 2 ) − E ( x 1 ) 2 ⋅ E ( x 2 ) 2 = V a r ( x 1 ) ⋅ V a r ( x 2 ) + V a r ( x 1 ) ⋅ E ( x 2 ) 2 + V a r ( x 2 ) ⋅ E ( x 1 ) 2 \begin{aligned}\mathrm{Var}(x_1\cdot x_2)&=\mathbb{E}\left((x_1\cdot x_2-\mathbb{E}(x_1\cdot x_2))^2\right)\\&=\mathbb{E}(x^2_1\cdot x_2^2)-\mathbb{E}(x_1\cdot x_2)^2\\&=\mathbb{E}(x^2_1) \cdot \mathbb{E}(x^2_2)-\mathbb{E}(x_1)^2\cdot \mathbb{E}(x_2)^2\\&=(\mathrm{Var}(x_1)+\mathbb{E}(x_1)^2)\cdot(\mathrm{Var}(x_2)+\mathbb{E}(x_2)^2)-\mathbb{E}(x_1)^2\cdot \mathbb{E}(x_2)^2\\&=\mathrm{Var}(x_1)\cdot \mathrm{Var}(x_2)+\mathrm{Var}(x_1)\cdot \mathbb{E}(x_2)^2+\mathrm{Var}(x_2)\cdot \mathbb{E}(x_1)^2\end{aligned} Var(x1x2)=E((x1x2E(x1x2))2)=E(x12x22)E(x1x2)2=E(x12)E(x22)E(x1)2E(x2)2=(Var(x1)+E(x1)2)(Var(x2)+E(x2)2)E(x1)2E(x2)2=Var(x1)Var(x2)+Var(x1)E(x2)2+Var(x2)E(x1)2证毕。

具体实例

给定两个独立同分布的随机变量 x 1 x_1 x1 x 2 x_2 x2,且 x 1 , x 2 ∼ N ( 0 , 1 ) x_1,x_2\sim \mathcal{N}(0,1) x1,x2N(0,1),根据以上两随机变量乘积的期望公式可知, x 1 ⋅ x 2 x_1\cdot x_2 x1x2的期望为 E ( x 1 ⋅ x 2 ) = E ( x 1 ) ⋅ E ( x 2 ) = 0 × 0 = 0 \mathbb{E}(x_1\cdot x_2)=\mathbb{E}(x_1)\cdot \mathbb{E}(x_2)=0\times 0 = 0 E(x1x2)=E(x1)E(x2)=0×0=0根据以上两随机变量乘积的方差公式可知 x 1 ⋅ x 2 x_1\cdot x_2 x1x2的方差为 V a r ( x 1 ⋅ x 2 ) = V a r ( x 1 ) ⋅ V a r ( x 2 ) + V a r ( x 1 ) ⋅ E ( x 2 ) 2 + V a r ( x 2 ) ⋅ E ( x 1 ) 2 = 1 × 1 + 1 × 0 + 1 × 0 = 1 \begin{aligned}\mathrm{Var}(x_1\cdot x_2)&=\mathrm{Var}(x_1)\cdot\mathrm{Var}(x_2)+\mathrm{Var}(x_1)\cdot \mathbb{E}(x_2)^2+\mathrm{Var}(x_2)\cdot \mathbb{E}(x_1)^2\\&=1\times 1 +1\times 0+ 1\times 0\\&=1\end{aligned} Var(x1x2)=Var(x1)Var(x2)+Var(x1)E(x2)2+Var(x2)E(x1)2=1×1+1×0+1×0=1

动物目标检测数据集 一、基础信息 数据集名称:动物目标检测数据集 图片数量: - 训练集:9,134张图片 - 验证集:1,529张图片 - 测试集:1,519张图片 总计:12,182张图片 分类类别: Bear(熊)、Cat(猫)、Cattle(牛)、Chicken(鸡)、Deer(鹿)、Dog(狗)、Elephant(大象)、Horse(马)、Monkey(猴子)、Sheep(绵羊) 标注格式: YOLO格式,包含归一化坐标的边界框和数字编码类别标签,支持目标检测模型开发。 数据特性: 涵盖俯拍视角、地面视角等多角度动物影像,适用于复杂环境下的动物识别需求。 二、适用场景 农业智能监测: 支持畜牧管理系统开发,自动识别牲畜种类并统计数量,提升养殖场管理效率。 野生动物保护: 应用于自然保护区监控系统,实时检测特定动物物种,辅助生态研究和盗猎预警。 智能养殖设备: 为自动饲喂系统、健康监测设备等提供视觉识别能力,实现精准个体识别。 教育研究工具: 适用于动物行为学研究和计算机视觉教学,提供标准化的多物种检测数据集。 遥感图像分析: 支持航拍图像中的动物种群分布分析,适用于生态调查和栖息地研究。 三、数据集优势 多物种覆盖: 包含10类常见经济动物和野生动物,覆盖陆生哺乳动物家禽类别,满足跨场景需求。 高密度标注: 支持单图多目标检测,部分样本包含重叠目标标注,模拟真实场景下的复杂检测需求。 数据平衡性: 经分层抽样保证各类别均衡分布,避免模型训练时的类别偏差问题。 工业级适用性: 标注数据兼容YOLO系列模型框架,支持快速迁移学习和生产环境部署。 场景多样性: 包含白天/夜间、近距离/远距离、单体/群体等多种拍摄条件,增强模型鲁棒性。
数据集介绍:农场野生动物目标检测数据集 一、基础信息 数据集名称:农场野生动物目标检测数据集 图片规模: - 训练集:13,154张图片 - 验证集:559张图片 - 测试集:92张图片 分类类别: - Cow(牛):农场核心牲畜,包含多种姿态和场景 - Deer(鹿):涵盖野外环境中的鹿类目标 - Sheep(羊):包含不同品种的绵羊和山羊 - Waterdeer(獐):稀有野生动物目标检测样本 标注格式: YOLO格式标准标注,含精确边界框坐标和类别标签 数据特征: 包含航拍、地面拍摄等多视角数据,适用于复杂环境下的目标检测任务 二、适用场景 智慧农业系统开发: 支持畜牧数量统计、牲畜行为监测等农业自动化管理应用 野生动物保护监测: 适用于自然保护区生物多样性监测系统的开发优化 生态研究数据库构建: 为动物分布研究提供标准化视觉数据支撑 智能畜牧管理: 赋能养殖场自动化监控系统,实现牲畜健康状态追踪 多目标检测算法验证: 提供跨物种检测基准,支持算法鲁棒性测试 三、数据集优势 多场景覆盖能力: 整合农场环境自然场景数据,包含光照变化、遮挡等真实场景 精确标注体系: - 经专业团队双重校验的YOLO格式标注 - 边界框精准匹配动物形态特征 数据多样性突出: - 包含静态、动态多种动物状态 - 涵盖个体群体检测场景 任务适配性强: - 可直接应用于YOLO系列模型训练 - 支持从目标检测扩展到行为分析等衍生任务 生态研究价值: 特别包含獐等稀有物种样本,助力野生动物保护AI应用开发
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

道2024

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值