Pytorch:model.train()和model.eval()用法和区别,以及model.eval()和torch.no_grad()的区别

model.train()和model.eval()的区别主要在于Batch Normalization和Dropout两层。

model.train()

在这里插入图片描述
官方文档
启用 Batch Normalization 和 Dropout。
如果模型中有BN层(Batch Normalization)和 Dropout,需要在训练时添加model.train()model.train()是保证BN层能够用到每一批数据的均值和方差。对于Dropout,model.train()是随机取一部分网络连接来训练更新参数。

model.eval()

在这里插入图片描述
官方文档
不启用 Batch Normalization 和 Dropout。
如果模型中有BN层(Batch Normalization)和Dropout,在测试时添加model.eval()model.eval()是保证BN层能够用全部训练数据的均值和方差,即测试过程中要保证BN层的均值和方差不变。对于Dropout,model.eval()是利用到了所有网络连接,即不进行随机舍弃神经元。

训练完train样本后,生成的模型model要用来测试样本。在model(test)之前,需要加上model.eval(),否则的话,有输入数据,即使不训练,它也会改变权值。这是model中含有BN层和Dropout所带来的的性质。

在做one classification的时候,训练集和测试集的样本分布是不一样的,尤其需要注意这一点。

model.train()和model.eval() 源码解析

model.train()model.eval()对应的源代码,如下所示,但是仅仅关注这一部分是不够的,现在需要记住当前的self.training的值是True还是False。

    def train(self, mode=True):
        r"""Sets the module in training mode.

        This has any effect only on certain modules. See documentations of
        particular modules for details of their behaviors in training/evaluation
        mode, if they are affected, e.g. :class:`Dropout`, :class:`BatchNorm`,
        etc.

        Returns:
            Module: self
        """
        self.training = mode
        for module in self.children():
            module.train(mode)
        return self
       
	 def eval(self):
        return self.train(False)

下边以Dropout为例,进入其对应的源代码,下方对应的self.training就是第一步中的self.training,原因在于Dropout继承了 _DropoutNd类,而 _DropoutNd由继承了Module类,Module类中自带变量self.training,通过这种方法,来控制train/eval模型下是否进行Dropout

class Dropout(_DropoutNd):
    '''
    	balabala
    '''

    @weak_script_method
    def forward(self, input):
        return F.dropout(input, self.p, self.training, self.inplace)

分析原因

使用PyTorch进行训练和测试时一定注意要把实例化的model指定train/evaleval()时,框架会自动把BN和Dropout固定住,不会取平均,而是用训练好的值,不然的话,一旦test的batch_size过小,很容易就会被BN层导致生成图片颜色失真极大!!!!!!

    # 定义一个网络
class Net(nn.Module):
    def __init__(self, l1=120, l2=84):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, l1)
        self.fc2 = nn.Linear(l1, l2)
        self.fc3 = nn.Linear(l2, 10)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

	# 实例化这个网络
    Model = Net()
     
    # 训练模式使用.train()
    Model.train(mode=True)
    
    # 测试模型使用.eval()
    Model.eval()

为什么PyTorch会关注我们是训练还是评估模型?最大的原因是dropout和BN层(以dropout为例)。这项技术在训练中随机去除神经元。
在这里插入图片描述
想象一下,如果右边被删除的神经元(叉号)是唯一促成正确结果的神经元。一旦我们移除了被删除的神经元,它就迫使其他神经元训练和学习如何在没有被删除神经元的情况下保持准确。这种dropout提高了最终测试的性能,但它对训练期间的性能产生了负面影响,因为网络是不全的。

下面我们看一个我们写代码的时候常遇见的错误写法:

在这个特定的例子中,似乎每50次迭代就会降低准确度。
如果我们检查一下代码, 我们看到确实在train函数中设置了训练模式。

def train(model, optimizer, epoch, train_loader, validation_loader):
    model.train() # ???????????? 错误的位置
    for batch_idx, (data, target) in experiment.batch_loop(iterable=train_loader):
    	# model.train() # 正确的位置,保证每一个batch都能进入model.train()的模式
        data, target = Variable(data), Variable(target)
        # Inference
        output = model(data)
        loss_t = F.nll_loss(output, target)
        # The iconic grad-back-step trio
        optimizer.zero_grad()
        loss_t.backward()
        optimizer.step()
        if batch_idx % args.log_interval == 0:
            train_loss = loss_t.item()
            train_accuracy = get_correct_count(output, target) * 100.0 / len(target)
            experiment.add_metric(LOSS_METRIC, train_loss)
            experiment.add_metric(ACC_METRIC, train_accuracy)
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx, len(train_loader),
                100. * batch_idx / len(train_loader), train_loss))
            with experiment.validation():
                val_loss, val_accuracy = test(model, validation_loader) # ????????????
                experiment.add_metric(LOSS_METRIC, val_loss)
                experiment.add_metric(ACC_METRIC, val_accuracy)

这个问题不太容易注意到,在循环中我们调用了test函数。

def test(model, test_loader):
    model.eval()
    # ...

在test函数内部,我们将模式设置为eval。这意味着,如果我们在训练过程中调用了test函数,我们就会进eval模式,直到下一次train函数被调用。这就导致了每一个epoch中只有一个batch使用了dropout ,这就导致了我们看到的性能下降。

修复很简单,我们将model.train() 向下移动一行,让其在训练循环中。理想的模式设置是尽可能接近推理步骤,以避免忘记设置它。修正后,我们的训练过程看起来更合理,没有中间的峰值出现。

补充:model.eval()和torch.no_grad()的区别

在PyTorch中进行validation/test时,会使用model.eval()切换到测试模式,在该模式下:

1.主要用于通知dropout层和BN层在training和validation/test模式间切换:

  • 在train模式下,dropout网络层会按照设定的参数p,设置保留激活单元的概率(保留概率=p)。BN层会继续计算数据的mean和var等参数并更新。
  • 在eval模式下,dropout层会让所有的激活单元都通过,而BN层会停止计算和更新mean和var,直接使用在训练阶段已经学出的mean和var值。

2.eval模式不会影响各层的gradient计算行为,即gradient计算和存储与training模式一样,只是不进行反向传播(back probagation)。

with torch.no_grad()则主要是用于停止autograd模块的工作,以起到加速和节省显存的作用。它的作用是将该with语句包裹起来的部分停止梯度的更新,从而节省了GPU算力和显存,但是并不会影响dropout和BN层的行为。

如果不在意显存大小和计算时间的话,仅仅使用model.eval()已足够得到正确的validation/test的结果;而with torch.no_grad()则是更进一步加速和节省gpu空间(因为不用计算和存储梯度),从而可以更快计算,也可以跑更大的batch来测试。

参考文献

pytorch中model.train()和model.eval()的区别

  • 277
    点赞
  • 1064
    收藏
    觉得还不错? 一键收藏
  • 51
    评论
### 回答1: model.eval()是PyTorch的一个方法,用于将模型设置为评估模式。在评估模式下,模型的行为会有所不同,例如在训练使用的dropout和batch normalization等操作会被禁用,以确保模型的输出稳定性和一致性。 torch.no_grad()是PyTorch的一个上下文管理器,用于禁用梯度计算。在使用该上下文管理器时,PyTorch将不会记录任何操作的梯度信息,从而减少内存消耗并提高代码的执行效率。通常在评估模型时使用该上下文管理器,以避免不必要的梯度计算和内存消耗。 ### 回答2: model.eval()和torch.no_grad()是PyTorch框架常用的两个函数,这两个函数的作用是在评估模型时避免梯度更新和反向传播产生影响,提高模型的评估速度和准确度。 model.eval()的作用是将模型设置为评估模式,即关闭dropout和batch normalization等层在训练和评估时不同的行为。在评估模式下,模型将不会进行梯度更新,而只是根据输入进行前向传播,得出预测结果。这样可以避免在评估时对模型产生不必要的影响,使得评估结果更加稳定和一致。 torch.no_grad()的作用是上下文管理器,用于在评估模式下关闭梯度计算,避免不必要的计算和存储。在评估模式下,我们并不需要计算梯度和进行反向传播,因此可以使用torch.no_grad()来关闭自动求导函数,避免不必要的计算和存储,进而提高评估速度和准确度。 总之,model.eval()和torch.no_grad()在评估模型时十分重要,它们能够保证模型的评估结果的准确性和速度。在使用PyTorch框架进行模型训练和评估时,需要注意在评估时使用这两个函数,避免模型被意外地修改。 ### 回答3: 在使用PyTorch进行深度学习模型训练和推理时,有两个常见的函数:model.eval()和torch.no_grad(),这两个函数用于减少计算和内存开销,以提高模型的推理速度和效率。 model.eval()是用来将模型设置为评估模式。在评估模式下,模型不进行训练,而是进行推理或预测。评估模式下,所有的Batch Normalization和Dropout都会被固定,使用之前的均值和方差,而不是根据当前mini-batch的均值和方差来计算。这样做的原因是,训练和评估的数据分布是不同的,如果训练好的模型直接用来推理,会导致结果不一致。因此,将模型设置为评估模式可以消除这种差异,并保证结果的一致性。 torch.no_grad()是一个上下文管理器,用来禁止梯度计算。在推理过程,我们通常只需要计算正向传播的结果而不需要计算梯度,因此可以使用torch.no_grad()来关闭梯度计算,以减少计算和内存开销,提高推理速度。同时,如果在上下文管理器内部进行计算,也不会对模型的参数进行更新,即不会影响后续的反向传播。 需要注意的是,model.eval()和torch.no_grad()必须要成对使用model.eval()是用于设置模型运行模式,而torch.no_grad()是用于设置是否计算梯度。两个函数配合可以保证模型在推理时不会误更新,且推理结果一致,同时还可以提高推理速度。如果不成对使用,会导致模型参数误更新或者推理结果不一致等问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 51
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值