
《人工智能》状态估计
文章平均质量分 89
Yngz_Miao
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【状态估计】偏差,匹配和外点
总是有非理想的因素(例如偏差和外点),使得实际的估计问题与本书中纯数学的推导不同。这些非理想因素是实际应用中误差的主要来源。在某些情况下,我们可以将估计的偏差叠加到估计框架中,而在有些情况不能这么做。这是由问题的能观性来决定的。在大多数实际的估计问题中,外点是真实存在的,因此有必要使用某种形式的预处理(如RANSAC)以及鲁棒代价函数。原创 2024-07-22 21:11:49 · 1391 阅读 · 0 评论 -
【状态估计】非线性非高斯系统的状态估计——离散时间的批量估计
上一篇文章介绍了离散时间的递归估计,本文着重介绍离散时间的批量估计。上一篇位置:【状态估计】非线性非高斯系统的状态估计——离散时间的递归估计。利用高斯-牛顿法来解决估计问题的非线性版本,这种优化方法也可以认为是MAP方法。首先建立最小化的目标函数,然后考虑如何解决它。构建目标函数,优化变量为:x=[x0x1⋮xK]x=\begin{bmatrix}x_0\\x_1\\\vdots\\x_K\end{bmatrix}x=x0x1⋮xK即需要估计整条轨迹。对于非线性情况,定于相对于先验和测量的误差为原创 2024-07-09 20:59:09 · 948 阅读 · 0 评论 -
【状态估计】非线性非高斯系统的状态估计——离散时间的递归估计
本章我们将研究如何处理现实世界中的系统——这些系统往往不是线性高斯的。可以说非线性非高斯(nonlinear non-Gaussian, NLNG)系统的状态估计仍然是一个非常热门的研究课题。限于篇幅,本章仅对一些常见的处理非线性和或非高高斯系统的方法进行讲解。首先,针对递归滤波问题,我们将介绍一种称为贝叶斯滤波的通用理论框架。我们熟知的扩展卡尔曼滤波、sigmapoint卡尔曼滤波和粒子滤波都可以看作是贝叶斯滤波的的近似。然后,我们再探讨非线性非高斯系统的批量估计问题。当然,全部的这部分内容比较多,这里将原创 2024-07-09 20:58:25 · 898 阅读 · 0 评论 -
【状态估计】线性高斯系统的状态估计——离散时间的递归滤波
前两篇文章介绍了离散时间的批量估计、离散时间的递归平滑,本文着重介绍离散时间的递归滤波。前两篇位置:【状态估计】线性高斯系统的状态估计——离散时间的批量估计、【状态估计】线性高斯系统的状态估计——离散时间的递归平滑。批量优化的方案及其对应的平滑算法方案,是LG问题下能找到的最好的方法了。它利用了所有能用的数据,来估计所有时刻的状态。不过这个方法有一个致命的问题:无法在线运行,因为它需要用未来时刻的信息估计过去的状态。为了在实时场合下使用,当前时刻的状态只能由它之前时间的信息决定,而卡尔曼滤波则是对这样一个问原创 2024-07-03 20:04:20 · 873 阅读 · 0 评论 -
【状态估计】线性高斯系统的状态估计——离散时间的递归平滑
上一篇文章介绍了离散时间的批量估计,本文着重介绍离散时间的递归平滑。上一篇位置:【状态估计】线性高斯系统的状态估计——离散时间的批量估计。批量优化方法给出了一个简洁漂亮的结论。它容易创建,也容易从最小二乘的角度来理解。然而,大多数时候暴力求解线性方程是非常低效的。事实上,等式左边的逆协方差矩阵有稀疏结构,可以利用这一点加速方程的求解:一次向前递推,一次向后递推。这种做法被称为典型的固定区间平滑算法。在上一篇中,最终的优化问题转化为了:(HTW−1H)x^=HTW−1z(H^TW^{-1}H)\hat x =原创 2024-07-03 20:03:24 · 1243 阅读 · 0 评论 -
【状态估计】线性高斯系统的状态估计——离散时间的批量估计
本章将介绍含有高斯随机变量的线性系统状态估计问题中的一些经典结论,包括重要的卡尔曼滤波器。我们将从离散时间的批量(batch)优化问题开始讨论,这可以导出随后非线性情况下的一些重要的结论,作为后文的铺垫。从批量式处理过程中,我们将导出递归式(recursive)算法的流程。最后,我们再讨论最重要的卡尔曼滤波器。当然,全部的这部分内容比较多,这里将会分为三篇文章进行论述。本文主要讨论的是:离散时间的批量估计。对于离散时间线性时变系统,定义运动模型:xk=Ak−1xk−1+vk+wkx_k=A_{k-1}x_{原创 2024-07-02 20:07:27 · 1035 阅读 · 0 评论 -
【状态估计】概率论基础
《机器人学的状态估计》是入行SLAM的经典书籍之一,其中有大量的公式相关的内容,看起来还是比较艰涩的。最近重新读一遍,顺便将其中的一些内容记录下来,方便以后回看。概率密度函数定义定义xxx为区间[a.b][a.b][a.b]上的随机变量,服从某个概率密度函数p(x)p(x)p(x),那么这个非负函数必须满足:∫abp(x)dx=1\int_a^b p(x)dx=1∫abp(x)dx=1这个积分等干1的条件,实际上是为了满足全概率公理。请注意公式里面的p(x)p(x)p(x)是概率密度而不是概率原创 2024-03-20 21:19:38 · 1786 阅读 · 0 评论