如何加载训练完毕后的模型文件继续训练模型

训练完成后得到了模型文件,下一次想接着上次的基础继续进行训练,这可怎么办?

小周来支招,打一顿就好了

  • 基于keras框架得到的h5文件

第一次训练模型得到的h5文件:

model = Sequential()
model.add(LSTM(150, input_shape=(train_x.shape[1], train_x.shape[2]),return_sequences=False))
model.add(Dense(30))
model.summary() 
model.compile(loss=["mse"], optimizer='adam',metrics=['mape','mae','mse'])
history = model.fit(train_x, train_y, epochs=epochs, batch_size=batch_size,  validation_data=[test_x, test_y],verbose=2, shuffle=True)
#save LeNet_model_files after train
model.save('lstm_model.h5')

利用h5文件接着上次的基础继续进行训练,只需:

#加载模型文件
model=load_model('lstm_model.h5')
model._make_predict_function()
#继续用数据训练
history = model.fit(train_x, train_y, epochs=epochs, batch_size=batch_size,  validation_data=[test_x, test_y],verbose=2, shuffle=True)
model.save('lstm_model2.h5')
  • 基于tensorflow框架得到的ckpt文件

先构建原模型图
再加载原模型

 图上是加载模型进行预测,把相应代码改成下面的训练即可实现继续训练!

 train_step.run(feed_dict={x: images, y_: batch[1],keep_prob1:prob1,keep_prob2:prob2,keep_prob3:prob3})

 

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fff2zrx

谢谢老板

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值