题目
给定一个数组 prices ,其中 prices[i] 是一支给定股票第 i 天的价格。设计一个算法来计算你所能获取的最大利润。
方法一:动态规划
考虑dp[i][0] 第i天的转移方程:
前一天已经没有股票不动,或者前一天有股票,今天卖出。
dp[i][0]=max{dp[i−1][0],dp[i−1][1]+prices[i]}
前一天已经持有一支股票不动,或者前一天没有股票今天买入。
dp[i][1]=max{dp[i−1][1],dp[i−1][0]−prices[i]}
初始状态:
dp[0][0]=0,dp[0][1]=−prices[0]。
结束状态:
dp[n−1][0] ,因为收益必然大于dp[n−1][1] 。
public int maxProfit(int[] prices) {
int n=prices.length;
int[][] dp=new int[n][2];
dp[0][0]=0;
dp[0][1]=-prices[0];
for(int i=1;i<n;i++){
dp[i][0]=Math.max(dp[i-1][0],dp[i-1][1]+prices[i]);
dp[i][1]=Math.max(dp[i-1][1],dp[i-1][0]-prices[i]);
}
return dp[n-1][0];
}
public int maxProfit(int[] prices) {
int n=prices.length;
int dp0=0;
int dp1=-prices[0];
for(int i=1;i<n;i++){
int newdp0=Math.max(dp0,dp1+prices[i]);
int newdp1=Math.max(dp1,dp0-prices[i]);
dp0=newdp0;
dp1=newdp1;
}
return dp0;
}
复杂度分析
时间复杂度:O(n),其中 n 为数组的长度。
空间复杂度:O(n)。如果使用空间优化,空间复杂度可以优化至 O(1)。
方法二:贪心
寻找 x 个不相交的区间 (l_i,r_i]使得等式最大化,每次选择贡献大于 0 的区间即能使得答案最大化。
class Solution {
public int maxProfit(int[] prices) {
int ans = 0;
int n = prices.length;
for (int i = 1; i < n; ++i) {
ans += Math.max(0, prices[i] - prices[i - 1]);
}
return ans;
}
}
复杂度分析
时间复杂度:O(n),其中 n 为数组的长度。我们只需要遍历一次数组即可。
空间复杂度:O(1)。只需要常数空间存放若干变量。