122. 买卖股票的最佳时机 II

题目

给定一个数组 prices ,其中 prices[i] 是一支给定股票第 i 天的价格。设计一个算法来计算你所能获取的最大利润。

方法一:动态规划

考虑dp[i][0] 第i天的转移方程:
前一天已经没有股票不动,或者前一天有股票,今天卖出。
dp[i][0]=max{dp[i−1][0],dp[i−1][1]+prices[i]}
前一天已经持有一支股票不动,或者前一天没有股票今天买入。
dp[i][1]=max{dp[i−1][1],dp[i−1][0]−prices[i]}
初始状态:
dp[0][0]=0,dp[0][1]=−prices[0]。
结束状态:
dp[n−1][0] ,因为收益必然大于dp[n−1][1] 。

    public int maxProfit(int[] prices) {
        int n=prices.length;
        int[][] dp=new int[n][2];
        dp[0][0]=0;
        dp[0][1]=-prices[0];
        for(int i=1;i<n;i++){
            dp[i][0]=Math.max(dp[i-1][0],dp[i-1][1]+prices[i]);
            dp[i][1]=Math.max(dp[i-1][1],dp[i-1][0]-prices[i]);
        }
        return dp[n-1][0];

    }

    public int maxProfit(int[] prices) {
        int n=prices.length;
        int dp0=0;
        int dp1=-prices[0];
        for(int i=1;i<n;i++){
            int newdp0=Math.max(dp0,dp1+prices[i]);
            int newdp1=Math.max(dp1,dp0-prices[i]);
            dp0=newdp0;
            dp1=newdp1;
        }
        return dp0;

    }

复杂度分析
时间复杂度:O(n),其中 n 为数组的长度。
空间复杂度:O(n)。如果使用空间优化,空间复杂度可以优化至 O(1)。

方法二:贪心

寻找 x 个不相交的区间 (l_i,r_i]使得等式最大化,每次选择贡献大于 0 的区间即能使得答案最大化。

class Solution {
    public int maxProfit(int[] prices) {
        int ans = 0;
        int n = prices.length;
        for (int i = 1; i < n; ++i) {
            ans += Math.max(0, prices[i] - prices[i - 1]);
        }
        return ans;
    }
}

复杂度分析
时间复杂度:O(n),其中 n 为数组的长度。我们只需要遍历一次数组即可。
空间复杂度:O(1)。只需要常数空间存放若干变量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值