- 博客(2)
- 收藏
- 关注
原创 LLM涉及技术
总结,这些技术都是在使模型更好地学习和适应特定任务上的尝试。例如,在"我喜欢吃"之后,模型可能会预测"苹果"或"巧克力"等等。其核心思想是使用人类的反馈来指导和优化模型的表现。例如,为了完成文本分类任务,我们可以使用标记为正面或负面的句子来进行微调。提到LLM,其中涉及的技术如自回归预训练、SFT、RM和RLHF是其关键组成部分。- 在预训练阶段,大量的文本数据被用来训练模型,这使得模型学习到了大量的语言结构、语法和事实知识。- 一旦完成了自回归预训练,模型就可以进行微调以适应特定任务。
2023-11-02 22:34:01 268
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人