n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。
给定一个整数 n,返回所有不同的 n 皇后问题的解决方案。
每一种解法包含一个明确的 n 皇后问题的棋子放置方案,该方案中 ‘Q’ 和 ‘.’ 分别代表了皇后和空位。
示例:
输入:4
输出:[
[".Q…", // 解法 1
“…Q”,
“Q…”,
“…Q.”],
["…Q.", // 解法 2
“Q…”,
“…Q”,
“.Q…”]
]
解释: 4 皇后问题存在两个不同的解法。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/n-queens
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
依行遍历所有可行的位置,最后一个后放下后再打印地图放入答案列表即可:
class Solution {
//判断p点是否和loc中row以前的点冲突
//冲突:x或y相等 或者在一条斜线上
public static boolean h1(int[][] loc,int[] p,int row){
for(int i=0;i<row;i++){
if(loc[i][0]==p[0]||loc[i][1]==p[1]){
return false;
}
if(loc[i][0]+loc[i][1]==p[0]+p[1]){
return false;
}
if(loc[i][0]-loc[i][1]==p[0]-p[1]){
return false;
}
}
return true;
}
//把正确答案转换成List<String>
public static void h2(int[][] loc,ArrayList array,int n){
char[] ans=new char[n];
ArrayList a=new ArrayList();
for(int i=0;i<ans.length;i++){
Arrays.fill(ans,'.');
ans[loc[i][1]]='Q';
a.add(String.valueOf(ans));
}
array.add(a);
}
//遍历一行中所有满足条件的位置,然后继续遍历下一行
//如果是最后一行了,把最后一个后放进去然后打印答案放入array中
public void h3(int n,int row,int[][] loc,ArrayList array){
int[] p=new int[2];
for(int i=0;i<n;i++){
p[0]=row;p[1]=i;
if(h1(loc,p,row)&&row!=n-1){
loc[row]=p;
h3(n,row+1,loc,array);
}else if(h1(loc,p,row)&&row==n-1){
loc[row]=p;
h2(loc,array,n);
}
}
}
public List<List<String>> solveNQueens(int n) {
ArrayList array=new ArrayList();
int[][] loc=new int[n][2];
h3(n,0,loc,array);
return array;
}
}