算法
七对dolce
这个作者很懒,什么都没留下…
展开
-
音频推荐从入门到放弃(一)
今天开始记录自己开发鲸音小程序推荐系统的全过程,一切从零开始。推荐算法考虑的是CB(content-based)和CF(collaborative filtering)结合。用户反馈方式考虑显示的二元制(喜欢,无偏好,不喜欢)评价,结合关联用户和物品的标签,隐式评价播放、浏览记录等。暂不考虑问题,噪声和新鲜度的问题。首先考虑CB算法基于内容的推荐算法试图去给用户推荐用户曾经喜欢过的物品。CB算法推...原创 2018-07-04 18:10:05 · 1296 阅读 · 1 评论 -
音频推荐从入门到放弃(二)--CB的内容分析
分析一个音频的属性,除了固有属性时长、分贝、音色以外,还有诸如作者性别、作者身份、发布时间、发布地理位置、音频内容类别、音频内容、音频热度等。这里我们考虑推荐短音频的实现,环境属性也放置到后面加强版再处理,只考虑音频的内容类别(已有设置)、音频内容(提取文字信息可以实现,另外一种方式是通过人为的标签来标识,目前我对文字处理还没有了解到很好的办法,后面会持续学习)、音频热度。这里还要考虑一个因素就是...原创 2018-07-05 15:45:38 · 300 阅读 · 0 评论 -
音频推荐从入门到放弃(三)--过滤组件
上一篇我们已经将内容属性提取出来,本篇将考虑过滤,即通过余弦相似度的计算将所有的音频作品分为可推荐和不可推荐两类。原创 2018-07-06 11:36:20 · 273 阅读 · 0 评论 -
音频推荐从入门到放弃(四)--特征学习
在开篇中提到将采用梯度下降法来进行特征学习:这里我们将学习系数暂设为0.5,反馈指数依据反馈类型来定。首先说一下我们的反馈途径,前面也提到主要采用二元制显示反馈评价,次要我们采用浏览某种类别的时间来作为反馈。先来考虑二元制反馈的学习,实际上这里是有三种状态的,喜欢、无偏好、讨厌。对于用户的每一次点赞或者打叉记录,我们定时在每晚1点定时学习,一条喜欢点赞反馈指数为+1,一条讨厌反馈指数为-1。假定上...原创 2018-07-06 14:41:37 · 292 阅读 · 0 评论