pytorch Tensor.to(device)和model.to(device) 的区别

本文详细介绍了在PyTorch框架中如何正确地将Module对象及Tensor数据转移到GPU进行加速计算。对于Module对象,只需直接调用to(device)即可;而Tensor数据则需接收返回值来确保正确设置device。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

区别所在

使用GPU训练的时候,需要将Module对象Tensor类型的数据送入到device。通常会使用 to.(device)。但是需要注意的是:

  • 对于Tensor类型的数据,使用to.(device) 之后,需要接收返回值,返回值才是正确设置了device的Tensor。

  • 对于Module对象,只用调用to.(device) 就可以将模型设置为指定的device。不必接收返回值。

来自pytorch官方文档的说明:

Tensor.to(device)

在这里插入图片描述

Module.to(device)

在这里插入图片描述

举例

# Module对象设置device的写法
model.to(device)

# Tensor类型的数据设置 device 的写法。
samples = samples.to(device)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值