神经网络和深度学习基础
qq_turn
这个作者很懒,什么都没留下…
展开
-
神经网络与深度学习-目录
目录:—— Neural Networks and Deep Learning第一章:使用神经网络识别手写数字第二章:反向传播算法如何工作原创 2019-04-06 09:35:21 · 294 阅读 · 0 评论 -
第 1 章 使用神经网络识别手写数字
1.1 感知器感知器在 20 世纪五、六⼗年代由科学家 Frank Rosenblatt 发明,其受到 Warren McCulloch 和 Walter Pitts 早期的工作的影响。今天,使用其它人工神经元模型更为普遍 —— 在这本书中,以及更多现代的神经网络工作中,主要使用的是一种叫做 S 型神经元的神经元模型。...原创 2019-04-06 10:26:02 · 266 阅读 · 0 评论 -
第 2 章 反向传播算法如何工作
2.1 热身:神经网络中使用矩阵快速计算输出的方法原创 2019-04-06 14:52:00 · 191 阅读 · 0 评论 -
第3章 改进神经网络的学习方法
3.1交叉熵代价函数3.1.1 引入交叉熵代价函数3.1.2使用交叉熵来对MNIST数字进行分类3.1.3交叉熵的含义?源自哪里?3.1.4 柔性最大值(Softmax)3.2过度拟合和规范化3.2.1 规范化L2规范化(权重衰减weight decay)3.2.2为何规范化可以帮助减轻过度拟合3.2.3 规范化的其他技术L1规范化弃权(Dropout)人为扩展训练数据...原创 2019-08-31 14:39:45 · 226 阅读 · 0 评论 -
学习常用知识点
激活函数常用的非线性激活函数有sigmoid、tanh、relu等等,前两者sigmoid/tanh比较常见于全连接层,后者relu常见于卷积层。原创 2019-03-30 09:47:32 · 340 阅读 · 0 评论 -
第四章 神经网络可以计算任何函数的可视化证明
原创 2019-09-03 20:15:24 · 243 阅读 · 0 评论